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Intro to Machine Learning 

Main lecturer: Sebastian Thrun (Stanford, Google) 

This is a very brief overview of the course. For more detailed summary of similar concepts, see the 

courses summaries in Intro to Artificial Intelligence (also by Thrun), Supervised Learning and 

Unsupervised Learning. 

 

• Main code package: Python \ SK-learn – looks really good and convenient. 

• Each section seems to end with a quite simple, medium-sized project to practice applying the new 

algorithm on some given data through SK-learn. 

• Naïve Bayes: 

o Algorithm: 

▪ Define features xi. 

▪ For each class c learn f(xi|c) empirically. 

▪ Assign probability to new x using Bayes rule on {𝑃𝑐 ≔ Π𝑖𝑓(𝑥𝑖|𝑐)}𝑐. 

• The last formula assumes independence of features, hence naïve. 

o Classic example: classifying text using bag-of-words approach. 

• SVM: very shallow discussion. 

o The idea of maximum margin is explained. 

o The idea of non-linear separator using new fictive coordinates is demonstrated through 

the classic example of circle separator. It is mentioned without explaining that the new 

coordinates are yielded by some magical kernel. 

o Two hyper-parameters (C & 𝛾) which control smoothness & points-reach are briefly 

explained. Both seem to control the tradeoff between accuracy and avoiding overfitting. 

▪ The reach of a point determines how quick the influence of the point decays. Fast 

decay means that the separator will learn more locally (which overfits more). 

o It is demonstrated how to easily apply SVM with custom kernel & hyper-parameters using 

SK-learn. 

• Decision Trees: 

o Basically a sequence of if-else’s. 

▪ Equivalent to step-function. 

o Allows non-linear classification (and possibly regression) with very simple basic blocks. 

o A tree is learned by greedily splitting nodes that maximize information gain (i.e. cause 

largest reduce of entropy) or similar measures. 

o Trees have high tendency to overfit, hence it is important to use the hyperparameters 

(such as the minimum training samples required in a leaf that is considered for a split) to 

reduce overfit. 

▪ The bias-variance tradeoff of a learner (i.e. its sensitivity to the training data) was 

briefly discussed. 

o Many trees can be used together through the forest (and also ensemble?) algorithm. 

 

https://www.udacity.com/course/intro-to-machine-learning--ud120
https://idogreenberg.neocities.org/#_Self-studied_Courses_Summaries
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• Enron corpus: corpus of emails of big company that crashed due to frauds.  

o Learn on various-sized training sets and compare validation errors to see dependence of 

performance on size of data is useful – in particular to see whether more data are needed. 

• Outliers: can be ignored (if context justifies it) by training, detecting samples with large residual 

errors, remove them and re-train. 

o Another method (that was not mentioned) is detecting samples with “too large” influence 

on the learning, using Cook Distance. 

• Clustering: only k-means was discussed. Need to set number of clusters in advance. Retrying 

multiple times was suggested to deal with local minima. 

• Feature scaling: 

o While many learning methods (e.g. linear regression, decision trees) aren’t sensitive to 

feature scales, others are sensitive – sometimes unexpectedly (e.g. SVM and K-means for 

considering Euclidean distance in the input space; regularized linear regression). Hence, 

scaling features by default is good practice. 

o Most popular scaling methods are min/max scaling (𝑥 ≔ (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)) 

and mean/var scaling (𝑥 ≔ (𝑥 − 𝜇)/𝜎). 

o SK-lean inherently supports features scaling. 

• Text learning: only bag of words approach was discussed (count vectorizer in SK-learn), along with 

basic pre-processing (stopwords deletion and stemming, both recommended through NLTK). 

o It was suggested to normalize words counting by the frequency of the word, so that rare 

words will have larger weights (at least in learning methods which are scale-sensitive). 

• Feature selection: 

o Too many features may contain irrelevant information, cause overfitting, and/or slow 

down the learning. 

o Engineering smart features and choosing only the relevant ones are essential for the 

success of the training. 

o Initial feature selection can be done to filter out the less promising features, especially 

when feature space is huge (e.g. words counting space as in bag of words learning), and 

can be done for example by greedily check for each feature its own potential as a single 

input. 

o Regularization is also important, in particular one that actually zeroizes coefficients (such 

as Lasso which is supported by SK-learn). 

• PCA: PCA + eigenfaces example. 

• Validation: train & test sets (even validation set was not discussed); cross validation. 

• Evaluation metrics: mainly classification was discussed 

o Accuracy = rate of correct predictions – sensitive to: 

▪ Asymmetry in number of samples per class. 

▪ Asymmetry in cost of error in different classes. 

o Confusion matrix: C[i,j] = P(predict j for instance of i). 

▪ Recall(i)       = TP(i)/(TP(i)+FN(i)) = P(correct | instance of i) 

▪ Precision(i) = TP(i)/(TP(i)+FP(i))  = P(correct | i was predicted) 

o F-score was not discussed. 
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• Summary: 

 

 


