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Summary 

What is RL 
• RL = make decisions that maximize rewards over time. 

• Basic model of the world – MDP: (S,A,T,R) 

o States of world; actions that can be made in each state; Markovian transition to the next 

state T(s,a,s’); reward of the last transition/action R(s,a,s’) or R(s,a); 1 time-unit per action. 

• Sources of uncertainty (not all of them are included in every RL problem): 

o Stochasticity: action 𝑎 in state 𝑠 may result in non-deterministic: 

▪ s’  (modeled through T(s,a,s’)) 

▪ R(s,a)  (see stochasticity of rewards below) 

o Unknown world: the states and transitions of the MDP are unknown – see exploration. 

o Partial observations: the current state is unknown – only a partial observation of it is 

available (see POMDP below). 

o Note: uncertainty may be converted from one type to another by different modeling. 

Relations to other problems 

• Supervised learning: 

o RL maximizes rewards rather than approximates a desired known output. 

o RL lives in time-oriented world – sequential problems which depend on each other 

through transitions over time. 

• Search / Planning: RL needs exploration to reveal unknown parts of the world (in the same time 

of collecting rewards). 

• Markov Chains (or Markov Processes, or HMM): RL needs to choose actions and collect rewards 

in addition to learning the world. 

Finding an optimal policy 
• Model-based approach – learn the model of the world and use it to find an optimal policy: 

o Explore the world: learn transitions and rewards to form the corresponding MDP. 

o Solve the MDP: for every state 𝑠, estimate 𝑉(𝑠) which summarizes both immediate and 

future rewards. 

o Choose the policy: 𝜋(𝑠) ≔ argmax
𝑎

𝑅(𝑠, 𝑎) + 𝐸[𝑉(𝑠𝑛𝑒𝑥𝑡)|𝑠, 𝑎] = argmax
𝑎

𝑄(𝑠, 𝑎). 

• Model-free approach – don’t bother to learn transitions & rewards explicitly: 

o Learn the values of states and/or actions while exploring the world with some policy. 

o Update the policy from time to time according to the values. 

• The tradeoff: model requires more work, model-free requires more (typically simulative) data. 

Model-free solutions 

• Temporal Difference (TD): update states values while applying some policy (repeatedly in ending 

MDP or continuously in non-ending one). 

o TD(0): at every step t, re-evaluate 𝑉(𝑠𝑡−1) using 𝑉(𝑠𝑡): 

𝑉(𝑠𝑡−1) ≔ 𝑉(𝑠𝑡−1) + 𝛼𝑡[𝑟𝑡 + 𝛾𝑉(𝑠𝑡) − 𝑉(𝑠𝑡−1)] 

o TD(1): at every step t, re-evaluate all the states which preceded 𝑠𝑡. 
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▪ This essentially leads to evaluation of any 𝑉(𝑠𝑡−1) by 𝑉(𝑠∞), which is more direct 

(hence less sensitive to Markov assumption) but applies weaker exploitation of 

the data (since 𝑉(𝑠𝑡−1) does not rely on the futures of 𝑠𝑡 from previous visits). 

o It is also possible to update K-steps back (rather than 1 step as in TD(0) or ∞ steps as in 

TD(1)). Usually a weighted mixture of K’s is used, where the weighting is controlled 

through a parameter 0 ≤ 𝜆 ≤ 1, yielding 𝑻𝑫(𝝀). 

o Note: learning may be sensitive to the (either constant or dynamic) policy used. 

o More generally, the TD approach allows online evaluation of future-dependent quantities 

in any Monte-Carlo-sampled process: at any step t we re-evaluate according to available 

data, which is helpful when multiple dependent quantities ({𝑉(𝑠)}𝑠) are evaluated 

simultaneously. 

• Q-learning: learn 𝑄(𝑠, 𝑎) directly rather than 𝑉(𝑠). 

o Can be seen as a variant of the general TD approach. 

o Very simple to implement, and guaranteeing (possibly slow) convergence to 𝑄∗. 

Model-based solutions 

• State Evaluation: Immediate reward + future rewards. 

• Formalized as a recursive equation – Bellman equation – with reduction 𝛾. 

o 𝑽(𝒔) = 𝐦𝐚𝐱
𝒂

∑ 𝑻(𝒔, 𝒂, 𝒔′)(𝑹(𝒔, 𝒂, 𝒔′) + 𝜸𝑽(𝒔′))𝒔′  

o Alternative formulation uses 𝑄(𝑠, 𝑎) (defined by 𝑉(𝑠) = max
𝑎

𝑄(𝑠, 𝑎)) instead of 𝑉(𝑠). 

• [Method I] Direct Value Iteration: ∀𝑠: 𝑉𝑡+1(𝑠) ≔ max
𝑎

∑ 𝑇(𝑅 + 𝛾𝑉𝑡(𝑠′))𝑠′  (iterate over t) 

• [Method II] Linear Programming (less common): rewrite Bellman eq. as a set of linear constraints 

𝑉(𝑠) ≥ ⋯ (instead of “V(s)=max…”) and minimize V(s) under these constraints (leading back to 

equality). 

• [Method III] Policy Iteration – improve policy iteratively: 

o Policy evaluation: solve simplified Bellman eq. (with 𝑎 ≔ 𝜋(𝑠) instead of max
a

) to find 

{𝑉(𝑠)}𝑠 wrt the current policy – either with VI (shorter without the max
a

) or by solving 

linear system (one linear eq. per state). 

o Policy improvement: update policy greedily. 

Exploration 

• Random exploration: in step t, take a random action with probability 𝑝𝑡. 

o Exploration-exploitation tradeoff: 𝑝𝑡 ≔ 1/𝑡 → 0 guarantees convergence of policy, 

while ∑𝑝𝑡 → ∞ guarantees unbounded exploration. 

• 𝑹𝒎𝒂𝒙: always maximize value (no random actions), but assume that unexplored states/actions 

have high rewards. 

• Stochasticity of rewards can be handled by repeating exploration of the same states/actions, and 

estimating rewards using the Central-Limit Theorem. 

o In 𝑅𝑚𝑎𝑥 with stochastic rewards, until a state is sampled enough times (according to CLT), 

the missing samples can be replaced with high rewards. 
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Additional tips 

Setting rewards 

• Domain-knowledge. 

• Potential-based rewards reshaping may help accelerate learning. 

Generalization and Scale-up 

• Components to generalize: value functions, policies and transition-models. 

• Value function generalization: Instead of learning 𝑄(𝑠, 𝑎) separately for any (s,a) – Learn 𝑸(𝒇(𝒔)) 

for features of the states. 

o The learned 𝑄(𝑓(𝑠)) is often linear (∑ 𝑤𝑖𝑓𝑖(𝑠)𝑖 ) or a Neural Network. 

▪ Note: GD updates of 𝑄(𝑓(𝑠)) may diverge, especially if the features poorly 

distinct the various states, or if the initial Q’s are too big (compared to the 

rewards). 

▪ Averaging generalization Q-function (e.g. hard/soft KNN) can prevent divergence. 

o That’s actually supervised-learning which generalizes the value-assignment according to 

observations made by the exploration of the RL. 

o Equivalently (and more elegantly), the MDP may be re-defined in terms of the features. 

• Options: abstract actions which consist of (possibly conditional) sequences of actions, and last 

variant amount of time (in contrast to the 1-time-unit actions of MDP). 

o Semi-MDP: MDP with options. Bellman equation can be generalized. 

• Modular RL (goal abstraction): define multiple goals, define rewards according to each goal 

separately, learn Q-values for each goal separately, and aggregate all Q-values using voting. 

• Monte-Carlo Tree Search: local approximation of the Q-value of an MDP, which is based on 

simulating several short futures from any encountered state, and choosing action accordingly. 

Extended model: limited observations (current state is unknown to the agent) 
• Partially-observable model: 

o POMDP: the model includes observations z with probabilities O(s,z). 

o Belief state: 𝑏 ≔ (𝑃(𝑠))𝑠∈𝑆 – allows Bayesian State-Estimation (SE) every step according 

to the observations. 

• EM: alternatively refine the belief state and the transitions-model. 

• Bayesian RL: find mixed (random) action which maximizes the expected value over all possible 

states (with weights b(s)). 

• Predictive State Representation (PSR): redefine states by the distribution of the future 

observations & rewards. 

o Naïve state representation – redefining states according to available observations (i.e. 

𝑠 ≔ 𝑧) – makes the Markov assumptions too strong (the current observation isn’t 

informative enough to predict future rewards). 
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[II,III] Basics 
• MDP, rewards, q-values, policies, Bellman Equation (variants with V,Q,C). 

[IV,V] TD(𝜆) and Convergence 
• Temporal Difference (TD): update states values while applying some policy (repeatedly in ending 

MDP or continuously in non-ending one). 

o TD(0): at every step t, re-evaluate 𝑉(𝑠𝑡−1) using 𝑉(𝑠𝑡): 

𝑉(𝑠𝑡−1) ≔ 𝑉(𝑠𝑡−1) + 𝛼𝑡[𝑟𝑡 + 𝛾𝑉(𝑠𝑡) − 𝑉(𝑠𝑡−1)] 

o TD(1): at every step t, re-evaluate all the states which preceded 𝑠𝑡. 

▪ This essentially leads to evaluation of any 𝑉(𝑠𝑡−1) by 𝑉(𝑠∞), which is more direct 

(hence less sensitive to Markov assumption) but applies weaker exploitation of 

the data (since 𝑉(𝑠𝑡−1) does not rely on the futures of 𝑠𝑡 from previous visits). 

o It is also possible to update K-steps back (rather than 1 step as in TD(0) or ∞ steps as in 

TD(1)). Usually a weighted mixture of K’s is used, where the weighting is controlled 

through a parameter 0 ≤ 𝜆 ≤ 1, yielding 𝑻𝑫(𝝀). 

o Note: learning may be sensitive to the (either constant or dynamic) policy used. 

o More generally, the TD approach allows online evaluation of future-dependent quantities 

in any Monte-Carlo-sampled process: at any step t we re-evaluate according to available 

data, which is helpful when multiple dependent quantities ({𝑉(𝑠)}𝑠) are evaluated 

simultaneously. 

o Q-learning: learn 𝑄(𝑠, 𝑎) directly rather than 𝑉(𝑠). 

▪ Can be seen as a variant of the general TD approach. 

▪ Very simple to implement. 

▪ Convergence (possibly slow) to the optimal 𝑄∗ is guaranteed. 

• Proven by the fact that the update in Q-learning is a contraction operator 

over Q-functions space. 

[VI] Value-Iteration, Linear-Programming and Policy-Iteration 
• Value Iteration: given a policy, assign values to states iteratively (starting from the rewards and 

updating according to the policy, the following states and the discount factor gamma). 

• Linear Programming for the MDP problem: 

o Original representation – find max vs which equals the following: ∀𝑠: 𝑣𝑠 = max
𝑎

( 𝑅 +

𝛾𝐸[𝑣𝑠′])  – constraint is not linear! 

o New representation – find minimal vs which is larger than the following: 𝑚𝑖𝑛∑𝑣𝑠 such 

that 𝑣𝑠 ≥ 𝑅 + 𝛾𝐸[𝑣𝑠′]  – that’s solvable through linear programming! Though  

o Dual form of the LP problem – variables and constraints are swapped – derives a different 

interpretation of MDPs (maximize rewards such that the “policy-flow” that enters each 

state equals the flow that leaves it). 

o LP usually isn’t very practical for MDPs. 

• Policy Iteration (Ron Howard): while policy is not optimal (in sense of Bellman Equation): (1) 

assign values to states (e.g. using Value Iteration wrt current policy); (2) update policy to maximize 

the currently-assigned values. 

o Policy Iteration works – converges without local optima. 
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[VII] Rewards Reshaping 
• Rewards can be redefined in ways that don’t change the optimal policy, but may allow a 

learning algorithm to learn that policy more quickly. 

o E.g. if a robot gets a reward for moving towards a ball, hitting it, and making it reach the 

goal – then the robot will practically never encounter the rewarded states enough to 

understand what it needs to do. However, if it is slightly rewarded for getting closer to 

the ball and moving it towards the direction of the goal, then it will naturally explore more 

relevant states and actions. 

o Note: reshaping rewards expresses our Domain Knowledge. 

• Adding a constant scalar to all rewards or multiplying by a positive scalar don’t change the optimal 

policy, though they’re not very useful either. 

• Potential-based reward reshaping: 

o Theorem: if we assign values for states F(s) in advance, and redefine the rewards as 

R’(s,a,s’) := F(s’)-F(s)+R(s,a,s’) (i.e. the actual reward + the value of the new state – the 

value of the old state), then the optimal policy doesn’t change. 

o Theorem [E. Rewarf]: Q-learning with potential function F(s) ≡ Q-learning with Q-values 

initialized to Q0(s):=F(s), i.e. potential-based rewards reshaping is equivalent to 

initialization of the values. 

▪ In particular, randomization of the initial Q-values is equivalent to randomized 

potential function, thus is not recommended. 

[VIII] Exploration 
• K-armed Bandits problem (מכונת מזל עם כמה ידיות): 

o Can be represented as a degenerated MDP (e.g. single state with K actions and 

randomized rewards). 

o Basically learn the distribution of each bandit and then choose the best bandit repeatedly. 

o If we’re interested in maximizing the expected reward, then by the Central Limit Theorem, 

after n samples of a certain bandit we know that 𝜇 ∈ 𝐼𝛿,𝑛 with probability 1 − 𝛿, where 

𝐼𝛿,𝑛 is: 

 

o By setting 𝑵𝑲,𝜹,𝝐 such that 
𝒁𝜹/𝑲

√𝑵
< 𝝐, we receive an 𝝐-approximation of 𝝁 (hence we find 

𝝐-near optimal arm) with probability ≥ 𝟏 − 𝜹 within 𝑲 ⋅ 𝑵 steps. 

▪ 𝑵𝑲,𝜹,𝝐 =
𝟐

𝝐𝟐 𝒍𝒏 (
𝟐𝑲

𝜹
), hence accuracy is much more expensive than certainty. 

o Note: it turns out that all the following criteria are equivalent for algorithms of the 

bandits problem, hence all of them are achieved by the algorithm described above: 
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• Exploring deterministic MDPs (transitions and rewards are deterministic but unknown) – 𝑹𝒎𝒂𝒙 

exploration method: 

o Set some global 𝑅𝑚𝑎𝑥 (intended to be larger than any actual reward), and for any 

unknown reward R(s,a,s’) assume that 𝑅(𝑠, 𝑎, 𝑠′) = 𝑅𝑚𝑎𝑥. 

o Each time a new reward is observed, the new approximation of the MDP needs to be 

solved (i.e. the policy needs to be recomputed). 

o When the exploration is done, the solution of the current approximation of the MDP is 

optimal for the actual MDP. 

▪ Note: due to rewards discount, the exploration may be done (in sense of 

stopping observing new rewards) without exploring all the possible rewards: for 

aggressive discount 𝛾, far states may remain unobserved –in cases where even 

the optimistic reward 𝛾#𝑠𝑡𝑒𝑝𝑠 ⋅ 𝑅𝑚𝑎𝑥 isn’t high enough. 

o Due to assumption of determinism, the exploration can be done within 𝒏𝟐𝒌 steps (nk 

state-action pairs to observe, and up to n states to get to a new observation), which also 

bounds the number of non-optimal actions used for exploration. 

o Note: assuming optimistic scores for unexplored states is similar to the idea of all Breath-

based graph search algorithms (BFS, Dijkstra, A*), in which the frontier states receive 

optimistic heuristic scores 𝑠𝑐𝑜𝑟𝑒(𝑠) ≔ 𝑑(𝑠0, 𝑠) + 𝑑𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐(𝑠, 𝑠𝑓). 

• Exploring stochastic MDPs (with n states and k actions) using General 𝑹𝒎𝒂𝒙: 

o For any (s,a), use the mean of the existing observations as estimate of R(s,a) (that’s also 

the expected value and the ML of R(s,a) given the observations). 

▪ If the number of observations if too small yet (< 𝑵𝒏⋅𝒌,𝜹,𝝐 as defined above), then 

define the missing observations to be 𝑹𝒎𝒂𝒙. 

o Note: non-optimality may be caused by inaccurate transitions model in addition to 

inaccurate rewards model, hence both have to be referred to as part of errors analysis. 

[IX] Generalization 
• Since practical problems have too many states for either modeling or exploring, practical 

algorithms must generalize their knowledge to “similar” states. 

• Solving Q explicitly: 

o Using a set of features of states f(s), we limit the Q-function to be some (possibly linear) 

function of the features and of some to-be-learned parameters w: 𝑸(𝒔, 𝒂) =

𝑭(𝒘, 𝒇(𝒔)) = ∑ 𝒘𝒊𝒇𝒊(𝒔)𝒊 . 

o The Q-learning now updates Q(s,a) only through {𝑤𝑖} (and not directly 𝑄(𝑠, 𝑎) ≔ ⋯ as 

before): 
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Δ𝑤𝑖 ≔ 𝛼 ((𝑅 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎))
𝑑𝑄(𝑠, 𝑎)

𝑑𝑤𝑖
 

i.e. 𝑤𝑖 is changed such that Q(s,a) is moved towards its Bellman-Equation-desired-value, 

similarly to Gradient Descent. 

▪ This turns out to do quite well in robotics and in certain games’ bots. 

o Baird’s counterexample: explicit Q-learning using GD wrt features may cause wrong and 

diverging learning, in particular if the initial Q’s are very dominant compared to the states 

rewards, or if the states share the same weights (i.e. there’re features which are similar 

over various states). 

o To avoid divergence of weights (and respectively divergence of values), one can use an 

averaging generalization function – one that assigns to any unobserved state a value 

which is some convex combination of the observed values 𝑣(𝑠𝑛𝑒𝑤) =

∑ 𝑤(𝑠, 𝑠𝑛𝑒𝑤)𝑣(𝑠)𝑏𝑎𝑠𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 / 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑠 . 

▪ A possible supervised learner which never extrapolates out of the range of the y-

values of the data is K-Nearest-Neighbors (𝑤(𝑠, 𝑠𝑛𝑒𝑤) =1/K if s is a nearest 

neighbor else 0). 

▪ Another one is distance-weighted function (“soft-KNN”) – 𝑤~1/𝑑(𝑠, 𝑠𝑛𝑒𝑤). 

▪ Note: averaging generalization cannot learn a trend and extrapolate to states 

which are more radical than the observed ones, even though such states may be 

of much interest. 

• Solving Q through a new MDP: 

o Features-based generalization of states of an MDP yields a new MDP: 

 

o In particular, this solves the too-large-world exploration issue, allows us to approximate 

values of states as weighted average of some basis states, and brings us back to a smaller 

MDP problem over the observed states, which is solvable by standard Q-learning or value-

iteration. 

• While this section mainly dealt with value function approximation, policies and transition-models 

can be generalized as well. 

• Further buzz-algorithms: least-squares policy-iteration (LSPI), Q-fitted iteration, GTD & GTD2. 
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[X] Partially-Observable MPDs 
• POMDP (Partially-Observable MDP): MDP in which the state 𝑠 (and possibly the reward r) is 

unknown to the agent, who only knows some observation 𝑧, whose relation to 𝑠 is defined by the 

observation function 𝑶(𝒔, 𝒛) ≔ 𝑷(𝒐𝒃𝒔𝒆𝒓𝒗𝒆 𝒛|𝒔). 

• State estimation: belief state = 𝑏(𝑠) ≔ 𝑃(𝑠𝑡 = 𝑠|𝑧1 … 𝑧𝑡). 

o Instead of current state, we hold at any point of time the vector of probabilities of states, 

which can be updated directly by P(we’ve been in s’, and moved to s, and observed z): 

𝒃𝒕+𝟏(𝒔) = 𝑺𝑬(𝒃𝒕, 𝒂𝒕, 𝒛𝒕+𝟏) ≔ ∑ 𝒃𝒕(𝒔′)𝑻(𝒔′, 𝒂𝒕, 𝒔)𝑶(𝒔, 𝒛𝒕+𝟏)𝒔′ . 

• POMDPs are undecidable (unclear in the lectures but seems that the optimal solution can only be 

approximated or something). 

• Value-iteration: 𝑣𝑡(𝑏) = max
𝑎

(∑ 𝑏(𝑠)𝑅(𝑠, 𝑎)𝑠 + 𝛾 ∑ 𝑃(𝑧|𝑏, 𝑎)𝑣𝑡−1(𝑆𝐸(𝑏, 𝑎, 𝑧))𝑧 ). 

o It looks like the value-iteration needs to iterate over infinity belief-states b, but since 𝑣𝑡+1 

can be represented as max over finite (though exponential in t) number of linear functions 

of b, then it’s essentially just piecewise-linear function in |{S}|-dimensional space, thus it 

is unnecessary to compute the value 𝑣𝑡 for any specific b. 

o Of course, value-iteration only helps us after we know the transitions model 𝑇. 

• Model-based reinforcement-learning of POMDP (i.e. learn the transitions model and use it): 

 

o As implied by the table, similarly to HMM, POMDP can be solved using Expectation-

Maximization: starting from some initial transitions model, we iteratively compute the 

sequential belief-states 𝑏1 … 𝑏𝑡 from the model, and then refine the model according to 

𝑏𝑡, 𝑧𝑡 , 𝑂(). 

• Model-free RL of POMDP (i.e. evaluate pairs (state,action) without explicit transitions model): 

o Since we don’t know s but only z, then model-free learning in POMDP actually evaluates 

Q(z,a). Such a memoryless policy in partially-observable world is problematic since we 

may keep doing a bad action in a certain state just because it looks the same (i.e. same z) 

as other states. To avoid that, random actions ({𝑃(𝑎)}𝑎) (as mixed strategies in Games 

Theory) are used. 

o Bayesian RL: one way to apply random action is to model the uncertainty as “we’re within 

one of several possible worlds, and we need to figure out which one is that while 

gathering rewards”. 

▪ That can be modeled as belief states in duplications of the world. 

▪ In this approach we assign initial probability to each possible world, thus every 

action has various possible outcomes according to which world we’re in, and 

choosing the best action (i.e. highest expected value according to VI in the various 

worlds) implicitly applies both exploration and exploitation. 
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▪ Since all the uncertainty is theoretically modeled in advance, then the RL looks 

more like planning. One algorithm that solves such planning problem is Bayesian 

Exploration-Exploitation Tradeoff in LEarning (BEETLE). 

▪ In complex worlds, such solutions still tend to be impractical compared to simple 

Q-learning, however they clarify the point that utopic RL would just be planning. 

• Predictive State Representation (PSR): 

o If the states aren’t directly measurable, then they’re essentially not real but part of some 

fictional model. Instead, a state will be defined by the distribution of its future 

measurements. 

▪ E.g. an illness can be defined by the future risks it applies rather than by some 

internal, unmeasurable state of the body. 

o PSR Theorem: PSR representation ≡ belief-state representation: any n-state POMDP (i.e. 

belief-state of size n) can be represented by a PSR with up to n future-measurements 

(“tests”, e.g. “if I go right will I measure X?”) of up to n steps long each. 

o PSR representations turn to be mainly useful in continuous-world problems, in which 

there are א-infinity states, but tests-oriented representation apparently helps the 

learning. 

o Some more modern predictive methods combines PSR with Least-Squares rather than 

Probabilistic learning, mainly when very much data is available. 

[XI] Scale-up 
• Temporal Abstraction: add abstract actions which combine sequences of the basic actions to 

apply high-level activity. 

o Option = high-level action = (𝐼;𝜋;𝛽) = (valid states for beginning the option 𝐼 ⊆ 𝑆; (possibly 

nondeterministic) policy 𝜋: 𝑆 × 𝐴 → [0,1]; distribution of in which state the option will 

terminate 𝐹: 𝑆 → [0,1]). 

o Options allow abstraction of actions which causes jumps in time (according to the option’s 

length). This mechanism is called Semi Markov Decision Process (SMDP). 

o In addition to simplifying the world to high-level actions, the definition of options may 

exploit our domain knowledge to focus on the interesting actions that lead to the 

interesting states, rather than explore lots of irrelevant states (e.g. going to arbitrary 

empty corners of rooms). It also allows to focus on the interesting points of times – where 

decisions are taken – rather than deciding from scratch at every unit of time. 

▪ As always, using  

o Bellman equation for SMDP: 𝑣𝑡+1(𝑠) = max
𝑜

(𝑅(𝑠, 𝑜) + ∑ 𝐹(𝑠, 𝑜, 𝑠′)𝑣𝑡(𝑠′)𝑠′ ). 

▪ R(s,o) is actually the expected reward during the option ∑𝛾𝑖−1𝑅(𝑠𝑖, 𝑎𝑖). 

▪ F(s,o,s’) is the probability of ending the option in s’ given we began in s. 

• Goal Abstraction – Modular RL – Voting: define several goals (e.g. in Pacman: eat dots & avoid 

ghosts), define states rewards wrt each goal, solve Q-value wrt each goal, aggregate all Q-values 

(“voting”) and choose option (abstract action) accordingly. 

o Methods of voting over goals: 

▪ Greatest-mass Q-learning: 𝑄(𝑠, 𝑎) ≔ ∑𝑄𝑖(𝑠, 𝑎) 

▪ Top Q-learning – “optimistic”: 𝑄(𝑠, 𝑎) ≔ 𝑚𝑎𝑥𝑄𝑖(𝑠, 𝑎) 
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▪ Negotiated w-learning – “loss-hater”: Q-value is weighted sum of the Q-values, 

with larger weights for goals with larger negative values. 

o Problem with voting over goals: Arrow’s impossibility theorem. 

▪ I’m not sure it’s relevant at all, since arrows theorem assumes ranking of goals 

(1,2,3…) rather than scoring, so sum over Q-values, for example, sounds fine. 

▪ The actual claim is more about being scale-sensitive – the rewards of the various 

goals must be scaled carefully so that the goals are correctly comparable. 

• Monte-Carlo Tree Search: 

o Finding the best policy can be represented as tree search, where the leaves (either 

terminal states or just the practical horizon we’re looking forward) are the aggregate 

rewards over the tree path. 

o Solving the Bellman equation for Q-value using VI can be seen as expanding the tree: 

▪ Select a leaf state in the tree, expand it by simulating several possible actions, and 

propagate (back-up) the achieved value back through the tree. 

▪ Sampling: to expand a state s accurately, 𝑉(𝑠) = max
𝑎

𝑄(𝑠, 𝑎) must be calculated 

over all possible actions. However, when numerous actions are possible, one may 

simulate just a sample of actions to get an estimation of V(s). 

▪ A*-like search: the current estimates of the Q-values along the tree can be used 

as heuristic for selection new states to expand – such that the horizon of the tree 

will be expanded in the paths which yield the best values. 

• Note: such greedy expanding of the tree may be far from optimal, since 

the heuristic of �̂� does not satisfy the optimism property required for A*. 

• This may still work if all rewards are negative or by using kind of 𝑅𝑚𝑎𝑥 

assumptions for non-expanded states. Otherwise, greedy expansion of 

the tree may be bad idea. 

▪ Rolling out the expansion: simulating the outcome of an action several steps 

forward is problematic since at each step it involves many new possible actions. 

Simplest way to expand a (state,action) pair is to continue the next steps 

randomly, though it may significantly underestimate the value of the 

(state,action). Another way is to expand as long as some constraints hold (e.g. for 

Pacman: simulate forward 10 steps as long as not eaten by a ghost). Possibly 

reasonable way is to use options rather than actions also in the rollout. 

• All these ideas sound quite foolish. 

o Ideally, the search along the tree (up to some horizon) would be simulated (assuming 

some simulation tool is available) from scratch after each real step. 

o Essentially, MCTS applies local approximation of the Q-value of an MDP, which allows us 

to search for a local policy and take a step without solving the whole (typically huge) 

MDP. 
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[XII,XIII,XIV] Game Theory 
• Most of the section is contained in any basic Game Theory course. 

• Game Theory is the mathematics of conflict (Charles Isabel).  

• Game = generalization of MDP to more than one player. 

• Policies of players are called strategies. 

• Tree representation: straight forward generalization from MDPs. 

• Matrix representation: For d players, any set of strategies 𝑆1. . . 𝑆𝑑 determines a (possibly 

stochastic) outcome. Hence all the information of the game can be encoded into a d-dimensional 

matrix above the space of outcomes, where each dimension's size is the number of possible 

strategies of the corresponding player. 

• Properties of a game: 

o Number of players (≥ 2) 

o Zero-sum vs. separate rewards 

o Deterministic vs. non-deterministic 

o Perfect information vs. hidden information 

• Von-Neuman Theorem, minmax, Nash Equilibrium, pure & mixed strategies, prisoner’s dilemma. 

• Repeating prisoner’s dilemma: 

o If the number of rounds is known, then by backwards induction the only rational strategy 

is to constantly defect. 

o In repeating prisoner’s dilemma with unknown number of rounds, however, defecting 

is not a dominant strategy. 

▪ E.g. after each round the game continues with probability 𝛾 (i.e. 1/(1 − 𝛾) 

expected rounds). 

• Note: the game can be represented as a graph, but not as a finite tree 

(cycle-less) anymore. 

o Tit-for-Tat strategy – copy rival’s behavior: 𝑎1 ≔ 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒, 𝑎𝑛+1 ≔ 𝑏𝑛. Against TfT: 

▪ Constant cooperation is better than constant defection, as long as 𝛾 > 𝛾0. 

▪ TfT vs. TfT result in constant cooperation, and are optimal against each other (by 

solving the corresponding MDP), which also makes it a Nash equilibrium. 

• Note: cooperation vs. cooperation would result in the same behavior, yet 

it’s not a Nash equilibrium since each player can benefit from changing. 

▪ Grim strategy – cooperate as long as the rival has never defected, otherwise 

defect forever – can also form a Nash equilibrium. 

• Subgame-perfect Nash equilibrium: 

o Nash equilibrium may be based on “threats” regarding what one player would do if the 

other changed his strategy (as in TfT – if the rival changes from TfT and defects, then I’ll 

defect as well). This may be problematic if these are implausible threats (as in Grim – 

where a single defection is supposed to lead to eternal counter-defection). 

o In both equilibriums above (TfT vs. TfT and Grim vs. Grim), the threats deal with states in 

the game that never occur unless a player changes his strategy. Thus, one may disbelieve 

those threats (i.e. disbelieve the strategy claimed by his rival), which ruins the Nash 

equilibrium. 
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o A stronger equilibrium verifies that all the threats are plausible – i.e. even if the rival does 

some unplanned move, and we get to an unexpected state in the game – the strategies 

still form an equilibrium in this subgame. 

o Subgame perfect Nash equilibrium = Nash equilibrium in every subgame of the game – 

including subgames that are not expected to ever occur. 

o Both Grim & TfT Nash equilibriums are not subgame perfect, i.e. show implausible threats. 

o Pavlov strategy: cooperate on first round, and change behavior whenever the rival 

defects (𝑎𝑛+1 ≔ 𝑎𝑛 if 𝑏𝑛 =cooperate else ! 𝑎𝑛). It can be seen as “keep your behavior as 

long as it’s winning”. 

o Pavlov vs. Pavlov is subgame perfect Nash equilibrium! 

▪ Turns out that the Pavlovian mechanism “punishes” a single exception from the 

opponent’s strategy with two defections (rather than one as in TfT), which causes 

the opponent to get back to cooperation, and makes the threat plausible. 

 

▪ Pavlov in human behavior. 

o Computational Folk Theorem (Michael Littman): for any 2-player game (in matrix 

representation), if there exist some cooperative (i.e. mutually beneficial) equilibrium then 

Pavlov-like equilibrium can be found, otherwise the game is zero-sum-like (or close to it) 

and corresponding equilibrium can be found – in both cases subgame perfect equilibrium 

and in polynomial time. 

• Stochastic games – explicit generalization of MDPs to multi-agent RL: 

o States S, actions set Ai per player, transitions 𝑇(𝑠, 𝑎1 … 𝑎𝑑 , 𝑠′), rewards Ri per player, 

discount 𝛾. 

▪ The model is a mathematical generalization of MDPs, yet it was published by 

Shapely before MDPs were published by Bellman. 

o Minmax Q: in zero-sum stochastic games, Q-learning can be applied based on a 

generalization of Bellman equation with minmax instead of max. 

▪ VI works, minmax-Q converges, Q* solution is unique, policies of players can be 

computed independently and are derived directly from Q*. 

o Nash Q: in general stochastic games, Q-learning can be applied based on a generalization 

of Bellman equation with Nash equilibrium instead of max. 

▪ VI doesn’t work, minmax-Q doesn’t converge, Q* solution isn’t unique, policies of 

players depend on each other, and the Nash equilibrium is hard to compute (non 

polynomial by current algorithms). 

▪ Other ideas are developed nowadays for this problem. 

• Chicken game: 

o Nash equilibriums: (1) Dare-vs.-Chicken, and (2) a symmetric mixed strategy (whose P 

depends on the exact rewards of the game). 

http://www.pnas.org/content/93/7/2686.short
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o We would like to have some equilibrium which is both "fair" (symmetric) and "good" (0 

probability for low-reward actions as Dare-vs.-Dare). 

• Correlated equilibrium: 

o A shared source of randomization defines a set of pairs of strategies, randomizes one 

pair out of the set, and tells each player what strategy he should adopt. 

o Examples: 

▪ In chicken game – uniform distribution over (C,D), (D,C), (C,C) – even though (C,C) 

is not a Nash equilibrium. 

▪ Traffic light. 

o The external mechanism must be trustable (fair randomization) but doesn't have to be 

authorized (not forcing strategies upon players). 

o The mechanism forms a correlated equilibrium iff no player can do better than following 

the instructions. 

o A correlated equilibrium can be found in polynomial time. 

o Every convex combination of Nash equilibriums is also a correlated equilibrium. 

o The information sharing in correlated equilibrium can also help to avoid bad outcomes 

that arise in equilibriums of independent mixed strategies, and encourage good outcomes 

– as in the chicken game, where (C,C) is promoted and (D,D) is completely avoided. 

• Coco strategies (Cooperative-competitive): strategies of 2 players that maximize the joint 

reward and divide it between the 2 players. 

o The rewards of the game are decomposed into joint rewards 𝑅𝑐𝑜𝑜𝑝 ≔ (𝑅1 + 𝑅2)/2 and 

relative rewards 𝑅𝑐𝑜𝑚𝑝 ≔ (𝑅1 − 𝑅2)/2. 

o The joint rewards define a cooperative game, where 𝑚𝑎𝑥𝑚𝑎𝑥𝑅𝑐𝑜𝑜𝑝 yields the maximize 

total reward for the 2 players. 

o The relative rewards define a zero-sum game which is solvable by minmax (through LP?). 

o Coco strategies ≔ 𝐚𝐫𝐠𝐦𝐚𝐱
𝑺𝟏

𝐚𝐫𝐠𝐦𝐚𝐱
𝑺𝟐

𝑹𝒄𝒐𝒐𝒑(𝑺𝟏, 𝑺𝟐), with rewards sharing of Coco 

value≔ (𝑹𝒄𝒐𝒐𝒑 + 𝑹𝒄𝒐𝒎𝒑)/𝟐 to player 1 and (𝑅𝑐𝑜𝑜𝑝 − 𝑅𝑐𝑜𝑚𝑝)/2 to player 2. 

▪ Reward sharing requires side payments. 

o Coco is NOT necessarily an equilibrium – just a “fair” way to maximize utility and 

dividing the reward – hence both strategies and side-payments must be binding by trust 

or some external force. 

o Coco strategies and values can be found in polynomial time. 

o Generalization to 𝑑 > 2 players is currently unknown. 

• Mechanism design: design the rules of a game to encourage certain players  behaviors 

(economics, studies incentives, etc.). 

o Bonus: King Solomon’s sentence: the fake mother wouldn’t really agree to cutting the 

baby (not reasonable behavior + indication to not being a mother). However, the 

following mechanism would reveal the real mother (assuming the real mother assigns 

larger value to having the baby): 
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▪ Note: I think this mechanism is actually just an auction with participation cost. 

[XV] Coordinating, Communicating and Coaching 
• Decentralized POMDP: generalization of POMDP to multiple agents who act simultaneously every 

time-step. 

o Communication between agents can be modeled as part of the observation function. 

o The problem is NEXP-complete (non-deterministic exponential complete, i.e. very hard). 

• Inverse RL: Bayesianly deduce the rewards of states from the behavior of an agent. 

o Kind of Reverse-Engineering of RL which is useful to understand the values that 

people/animals/organizations assign to states. 

o Can be solved by Maximum-Likelihood-IRL. 

• Policy shaping: use interactive feedback from a "coach" (e.g. a human who watches a bot playing 

a game and reports good and bad moves) to update policy. 

o The use of explicit feedback regarding the policy directly (rather than through states 

rewards) makes the learning simpler that classic RL. 

o If the feedback has limited reliability, then the limited reliability can be modeled by the 

probability of wrong feedback, and the feedback can be incorporated into the agent’s 

knowledge through the Bayesian expression P(action was good | good feedback). 

o The interactive feedback needs to be combined by the agent with other environmental 

feedbacks (e.g. the standard exploration and states rewards). 

• Multiple sources of feedback: 

o ML: choose the action whose likelihood to be the best (among possibilities) is maximal: 

𝑎𝑐ℎ𝑜𝑠𝑒𝑛 ≔ argmax
𝑎∈𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

Π𝑠∈𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑃(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑠|𝑎 𝑖𝑠 𝑏𝑒𝑠𝑡) 
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[XVI] Outroduction 
• Code libraries and DBs: 

o BURLAP – well suited for RL, including simulative environment. 

o UCI & Weka – intended for supervised learning. 

• Popular applications of RL: 

o Games with turns (e.g. backgammon). 

o Elevator control. 

o Helicopter control. 

 

http://burlap.cs.brown.edu/

