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Summary 
1. Statistics: conversion of information in observed data 𝑋 into a meaningful summary of the 

evidence supporting the truthfulness of various hypotheses related to a parameter of interest 𝜃. 

a. Fundamental principle: 𝑋 behaves differently for different 𝜃s (through 𝑝𝜃(𝑋)). 

Exponential Families, Sufficiency and Information 
2. Sufficient statistic: carries all info about 𝜃 – the distribution depends on 𝜃 only through it. 

a. Ancillary statistic (e.g. 𝑠𝑑(𝑋) for location) – independent of 𝜃, though may indicate the 

amount of uncertainty. 

b. Minimal sufficient T (e.g. 𝑋̅ for location) – “smaller” than any other sufficient U: T=h(U). 

c. Complete sufficient (e.g. Σ𝑋𝑖  in binomial) – contains exactly all info about 𝜃 (without any 

ancillary info). In particular, ancillary statistic can’t add any info regarding uncertainty. 

3. Exponential families:  𝑝𝜃(𝑥) = ℎ(𝑥)𝑒〈𝜂(𝜃),𝑇(𝑥)〉−𝐴(𝜃) 

a. Cover most of the popular distributions (though not uniform). 

b. Among families with const support (e.g. uniform is excluded) – only exp. families have 

small-dimensional sufficient statistic independently of the data dimension. 

c. The sufficient statistic wrt 𝜃 is simply 𝑻(𝑿) ≔ (∑ 𝑇𝑗(𝑋𝑖)
𝑛
𝑖=1 )

𝑗=1

𝑑
. 

d. T is complete iff the family is full-rank (dim𝜃 = dim(𝜂(𝜃)), e.g. unlike 𝑁(𝜃, 𝜃2)). 

4. Fisher Information:  𝐼𝑋(𝜃)𝑖𝑗 = 𝐸𝜃 [(
𝜕 log𝑝𝜃(𝑋)

𝜕𝜃𝒊
) (

𝜕 log𝑝𝜃(𝑋)

𝜕𝜃𝒋
)] =(if 𝑖=𝑗) 𝐸𝜃 [(

𝜕 log𝑝𝜃(𝑋)

𝜕𝜃𝑖
)
2

] 

a. “How much X varies with 𝜽”. 

i. KL-divergence (𝐸𝑝1 [log (
𝑝1(𝑋)

𝑝2(𝑋)
)]) satisfies 𝑲(𝒑𝜽, 𝒑𝜽+𝝐) ≈ 𝝐𝑻𝑰(𝜽)𝝐. 

ii. E.g. 𝐼𝑋(𝜇) = 1/𝜎2 for 𝑁(𝜇, 𝜎2). 

b. 𝑰𝑻(𝑿) ≤ 𝑰𝑿 with equality iff T is sufficient (for 𝑑𝑖𝑚𝜃 = 1). 

c. Increases linearly with amount of independent data. 

d. Cramer-Rao Theorem: 𝑽𝜽(𝑻(𝑿)) ≥ (𝑔′(𝜃))
2
(𝑰𝑻(𝑿)(𝜽))

−𝟏
 (𝑔(𝜃) ≔ 𝐸𝜃[𝑇]) 

e. Observed Fisher-Information (which doesn’t depend on the unknown 𝜃): −
𝜕 log 𝐿(𝜃)

𝜕𝜃2
|𝜃̂. 

Likelihood 
5. Likelihood = how probable 𝑋 would be given 𝜃 = how plausible 𝜃 is = 𝑳(𝜽) ≔ 𝒑𝜽(𝒙). 

6. MLE: 𝜃 ≔ argmax
𝜃∈Θ

𝐿(𝜃) = “best fit”.  Likelihood equation: ∇ log 𝐿(𝜃) = 0. 

7. A consistent sequence of solutions (there may be other local extrema for non-convex 𝑙𝑜𝑔𝐿, which 

correspond to solutions that don’t converge to the true 𝜃∗, thus not consistent) satisfies 

√𝒏(𝜽̂𝒏 − 𝜽∗)
𝑫
→𝑵(𝟎, 𝑰(𝜽∗)−𝟏) (in distribution), i.e. 𝒆𝒓𝒓(𝜽̂𝒏)~

𝟏

√𝒏𝑰(𝜽∗)
. 

8. Likelihood ratio: Wilk’s theorem for hypo. test (𝐻0: 𝜃 ∈ Θ0): −2 log (
sup
𝜃∈Θ0

𝐿(𝜃)

sup
𝜃∈Θ

𝐿(𝜃)
)

𝐷
→ 𝜒2(||Θ0||). 

9. Likelihood-based estimators may be bad (not unique, not exist, not consistent…), mainly when 

𝐝𝐢𝐦𝜽 ∝ 𝐝𝐢𝐦𝑿 (e.g. estimate 𝜎 when each pair (𝑋𝑖1, 𝑋𝑖2) has its own expectation 𝑁(𝜇𝑖 , 𝜎)). 

10. Alternative methods: 

a. Bootstrap: generate many estimates {𝜃𝑏} using resampling (with replacements) – and 

estimate the certainty of 𝜃 using their distribution. It is difficult to tell how accurate this 

https://www.google.com/url?q=https%3A%2F%2Fen.m.wikipedia.org%2Fwiki%2FExponential_family%23Table_of_distributions&sa=D&usd=2&usg=AFQjCNFjbqH8D-TzfbnheGGmHhQfAurnkA
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distribution is (remember that from the first place the problem was not knowing the 

accuracy of 𝜃…), and indeed the simple bootstrap variant is not guaranteed to work well. 

b. Monte-Carlo – “exact” rather than asymptotic: calculate estimates for many generated 

datasets corresponding to (simple) 𝐻0, and calculate p-value according to the quantile of 

the actual 𝜃 among these estimates. 

11. The likelihood principle: inference about 𝜃 should only depend on (up to multiply by const) 𝐿(𝜃). 

a. Was thought to be resulted from more basic principles – claim that was lately refuted. 

b. Frequentist hypothesis-test asks “how probable is X as extreme as this one”, which 

depends on probabilities of unobserved x’s, which violates the principle. 

c. Bayesian inference satisfies the principle (unless the prior depends on the experiment). 

d. The principle ignores the sampling-distribution, and may lead to unreasonable results 

(e.g. in experiment that stops only when results are “extreme”, it would ignore this fact). 

Bayesian Inference 
12. In addition to limit of frequency, use probability to represent uncertainty, e.g. of a parameter. 

13. Given prior 𝜋(𝜃), the posterior 𝝅𝒙(𝜽) =
𝝅(𝜽)𝒑𝜽(𝒙)

𝒑𝚷(𝒙)
 allows any kind of estimation. 

 Frequentist Bayesian 

Point estimate 

𝜃 

Find plausible 𝜃 
(one for which the data is likely) 

Find probable / probably-approximate 𝜃 

Interval estimate 
𝐼𝑋 

Confidence interval: generate 𝐼𝑋 in a way 
that independently on 𝜃, it would satisfy 
𝜃 ∈ 𝐼𝑋 with large probability 

Credible interval: generate 𝐼𝑋 such that 
𝑃(𝜃 ∈ 𝐼𝑋 | 𝑋) is large 

Hypothesis test 
𝐻0 

Given 𝐻0, how likely is it to observe as 
extreme data as X? 
(considering all Xs and only the tested 𝜃) 

Given X, how probable is 𝐻0? 
(considering all 𝜃s and only the 
observed X) 

14. Priors: 

a. Example – sensitivity to prior: for 𝑋~𝑁(𝜇, 1) and prior 𝜇~𝑁(𝜇0, 1), expected error (MSE) 

of posterior’s max is 
(𝜇∗−𝜇0)

2+𝑛

(𝑛+1)2
 (compared to 

1

𝑛
 for MLE). 

b. Prior elicitation: quantification of domain knowledge into prior dist. (complicated). 

c. Conjugate priors-class 𝐹: π ∈ 𝐹 ⇒ π𝑥 ∈ 𝐹 (simplifying analysis). 

i. E.g. normal (wrt normal model), gamma (wrt Poisson model). 

d. Markov-Chain Monte-Carlo (MCMC): numerical method for estimation of 𝜋𝑥(𝜃). 

e. Improper prior: not a probability function (e.g. const over all 𝑅). 

f. Jeffreys prior (private case of objective prior): “non-informative” (minimizing KL-

divergence 𝐾(𝑝𝑟𝑖𝑜𝑟, 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)) and uniform wrt FI-based geometry; though often 

improper and violates the likelihood principle (since prior depends on experiment setup). 

15. deFinetti’s Theorem: Exchangeability of {𝑋𝑖} (invariance of 𝑝𝜃(𝑋1…𝑋𝑛) to their order) is in 

certain cases equivalent to being iid (conditionally on unknown 𝜃). 

16. Laplace approximation: use optimization (finding max) to approximate certain integrals. 

17. Bernstein-von Mises: under some conditions, posterior mean 𝐸𝜋𝑥[𝜃] is asymptotically (1) similar 

to any likelihood-based estimator, and (2) normally-dist. around the true 𝜃∗ with 𝑉𝑎𝑟 =
1

𝑛𝐼(𝜃∗)
. 
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18. Inferential models (IM) & belief functions are kind-of generalization of Bayesian inference 

(though not probabilistic models), which distinct between lack of info (lack of belief) and 

conflicting info (low plausibility). 

Decision Theory 
19. For probability space (𝑋, {𝑝𝜃(𝑥)}), model decisions as actions (𝒂 ∈ 𝑨) with loss 𝑳(𝜽, 𝒂). 

20. Statistical inference can be modeled as decision problem where loss = error. 

21. Decision rule: 𝑎 ≔ 𝛿(𝑥), risk function: 𝑹(𝜽, 𝜹) ≔ 𝐸𝜃[𝐿(𝜃, 𝛿(𝑋)]. 

22. Admissible rule: not being dominated (worse risk for all 𝜃) by any other rule. 

a. A (minimal) complete class of rules includes (only) all the admissible ones. 

23. Rao-Blackwell: under convex 𝐿(𝜃, 𝑎) ∀𝜃, only 𝛿 = 𝛿(sufficient statistic) can be admissible. 

a. A dominating rule is 𝛿1(𝑡) ≔ 𝐸[𝛿0(𝑋)|𝑇 = 𝑡]. 

b. Example: for 𝑁(𝜃, 1), estimating 𝑃(𝑋 < 𝑐) by 𝛿 = mean(𝑋 < 𝑐) is dominated by 𝛿(𝑋 ). 

c. Randomized rules can be formulated as function of ancillary info, hence are inadmissible. 

d. Stein’s paradox: standard estimators (MLE, least-squares) for mean of multi-dimensional 

Gaussian 𝑁(𝜃, 𝐼) are inadmissible wrt L2-error loss of all 𝜃 elements simultaneously. 

24. Bayes risk: 𝒓(𝛑, 𝜹) ≔ 𝑬𝛑[𝑹(𝜽, 𝜹)], Bayes rule: 𝜹𝛑 ≔ 𝐚𝐫𝐠𝐦𝐢𝐧
𝛅

𝒓(𝛑, 𝜹) (admissible if exists). 

a. Bayes rule can often be found through the posterior risk 𝐸𝜋𝑥[𝐿(𝜃, 𝛿(𝑥))]. 

b. Generalized Bayes rule: Bayes rule for improper prior. 

i. A decision rule is admissible iff it is the “limit” (in terms of risk) of generalized 

Bayes rules of finite-measure priors. 

1. For exponential-family model, this limit is itself a generalized Bayes rule. 

25. Minimax decision rule: 𝐚𝐫𝐠𝐦𝐢𝐧
𝛅

𝐬𝐮𝐩
𝜽

𝑹(𝜽, 𝜹) (usually less practical out of adversary problems). 

a. A const-risk Bayes rule is minimax (i.e. minimax can be found by prior that makes it const). 

i. Such least-favorable prior 𝜋∗ satisfies 𝜋∗ = argmax
π

𝑟(𝜋, 𝛿𝜋). 

ii. 𝑋̅ in location problems under the squared-error loss has const risk and is minimax. 

26. Bayes minimizes average risk, and minimax minimizes max risk. Sometimes, under corresponding 

constraints, risk can be minimized uniformly for all 𝜃. 

27. Unbiased decision rule 𝛿:  ∀𝜃∗:   𝜃∗ = argmin
𝜃

𝐸𝜃∗[𝐿(𝜃, 𝛿(𝑋))]. 

a. Bayes rules in estimation problems are biased. 

b. Lehmann-Scheffe: admissible rule which is function of complete sufficient statistic is 

unique and uniformly minimizes risk among the unbiased rules. 

28. Equivariance constraints: if we only consider invariant decision rules (i.e. with structure of the 

form 𝛿(𝑔𝑥) = 𝑔̃𝛿(𝑥), such as standard location & scale estimators), then under some conditions, 

uniform risk minimization can be achieved as Bayes rule wrt corresponding prior. 

29. In hypothesis test with 0-1 loss, the risk is P(type-I err)+P(type-II err), thus Neyman-Pearson rules 

(which maximize power given significance, i.e. minimize type-II error given required type-I error) 

cover all the admissible rules. 

a. This holds for simple vs. simple and simple vs. one-sided. 

b. For simple vs. two-sided, there’s generally no uniformly-most-powerful test for given 

significance, unless restricting to unbiased tests. 
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Asymptotic Theory and Optimization-Based Estimators 
30. M- and Z-estimators define estimators in terms of Maximizing or Zeroizing the empirical average 

of some function 𝑚𝜃(𝑥) or 𝑧𝜃(𝑥) (e.g. 𝜃𝑛 ≔ argmax
𝜃

𝑚𝜃(𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅). 

a. Many popular estimators are private cases: MLE (𝑚𝜃 ≔ log 𝑝𝜃), Least-Squares 

(−(𝑦 − 𝑓𝜃(𝑥))
2

), mean (𝑧𝜃(𝑥) ≔ 𝑥 − 𝜃), median (𝑠𝑖𝑔𝑛(𝑥 − 𝜃)), Huber’s estimator 

(between mean and median). 

b. Such definition of estimator does not require an explicit model 𝒑𝜽(𝒙). 

c. M- and Z-estimators are consistent by LLN – as long as 𝑚𝜃({𝑋𝑖}1
𝑛) converges 𝜃-uniformly. 

d. √𝒏(𝜽̂𝒏 − 𝜽∗) is asymptotically-normal under quite weak conditions. 

i. Classes of z/m-functions that satisfy these conditions are called Donsker classes, 

and essentially admit “uniform CLT” (analog to uniform LLN in consistency). 

31. Asymptotic theory of standard estimators (e.g. MLE) is usually based on assumptions of 𝜃-

differentiability of 𝑝𝜃(𝑥), but for many properties, the weaker differentiability in quadratic 

mean (DQM) suffices: existence of FI, Cramer-Rao inequality, local asymptotic normality, etc. 

a. In particular, asymptotic normality is claimed to be a very general property of iid models 

– and not a property of estimators. 

32. Bayesian asymptotics can also be generalized for complicated cases (e.g. infinite-dimensional 

parameters, as in Neyman-Scott example), where consistency of the posterior can be defined and 

satisfied without the conditions of Bernstein-von Mises theorem. 

33. The consistency of the likelihood-based Bayesian posterior can be generalized to loss-function-

based “pseudo-posterior”, where the likelihood is replaced with 𝒆−𝒏⋅𝑳𝒐𝒔𝒔(𝜽). 

a. Equivalently, the negative log-likelihood is replaced with 𝑛 ⋅ 𝐿𝑜𝑠𝑠(𝜃). 

b. This removes the dependence on model and possible nuisance parameters, and kind of 

does the final step in connecting statistical modeling to empirical-loss minimization, 

AKA training wrt loss function. 

c. Syring & Martin (2015) used it for estimation of medical Minimal Important Difference. 

 

Pathological Examples 
34. Neyman-Scott: inconsistent MLE. 

35. Binomial vs. geometric experiment: likelihood principle allowing arbitrarily significant results. 

36. Stein’s paradox: standard location estimators of multi-dimensional Gaussian are inadmissible. 

37. Hodge’s estimator: irregular estimator (“superefficient” but error does not uniformly go to 0). 
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Summarizer Notes 
These notes are intended to keep the understanding and intuition of interesting concepts of advanced 

statistical theory described in the course. Since the course keeps high standards of mathematical 

formalism, and in order to stay loyal to the goal of the notes, many of the descriptions – including 

mathematical formulations – are significantly simplified in a way that may cause inaccuracies. 

For example, Bayes Theorem would be presented as 

 

and not as 
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Background 
1. Kullback-Leibler divergence:  𝐾(𝑓, 𝑔) ≔ 𝐸𝑓 [log (

𝑓(𝑋)

𝑔(𝑋)
)] = ∫ log (

𝑓

𝑔
)𝑑𝑓 

a. Geometric average of the ratio between the pdfs, which measures the distance between 

them, though it’s not a metric (non-negative but not symmetric and not satisfying the 

triangle inequality). 

2. Hoeffding inequality: if {𝑌𝑖} are independent mean 𝜇 on a support [𝑎, 𝑏], then: 

𝑃(|𝑌̅𝑛 − 𝜇| > 𝜖) ≤ 2𝑒−2𝑛𝜖
2/(𝑏−𝑎)2 

a. In particular 𝑛~(𝑏 − 𝑎)2/𝜖2. 

3. The “fundamental theorem of statistics”: 

a. “Empirical distribution function”:   𝑭̂𝒏(𝒙) ≔
𝟏

𝒏
∑ 𝑰(−∞,𝒙](𝑿𝒊)
𝒏
𝒊=𝟏  (for iid {𝑋𝑖~𝐹}𝑖=1

𝑛 ) 

b. Strong law of large numbers: 𝐹̂𝑛(𝑥) → 𝐹(𝑥) almost surely: ∀𝑥: 𝑃 (lim𝐹̂(𝑥) = 𝐹(𝑥)) = 1. 

c. Glivenko-Cantelli: ||𝐹̂𝑛 − 𝐹||
∞
→ 0 almost surely (i.e. uniform convergence for all 𝑥). 

d. Dvoretzky: 𝑷(||𝑭̂𝒏 − 𝑭||
∞
> 𝝐) ≤ 𝟐𝒆−𝟐𝒏𝝐

𝟐
 (again 𝑛~1/𝜖2). 

4. Fisher’s fiducial inference: 

a. An alternative to the frequentist statistics and Bayesian statistics, which wishes to 

converse 𝑃(𝑋|𝜃) to 𝑃(𝜃|𝑋) without assuming a prior on 𝑃(𝜃). 

b. Demonstration on 𝑈([0, 𝜃]): 

i. 𝑋 ≔ max
1≤i≤n

𝑥𝑖   →    𝑃(𝑋 ≤ 𝑎𝜃) = 𝑎𝑛 (0 ≤ 𝑎 ≤ 1) 

ii. →  𝑃 (𝜃 <
𝑋

𝑎
) = 1 − 𝑎𝑛 

iii. The calculation is similar to the pivotal method for finding a confidence interval. 

c. Unfortunately, this approach had difficulties to prove uniqueness and additivity of the 

fiducial probability, and to generalize to high-dimensional parameters Θ, and thus did not 

manage to gain much popularity. 

5. Statistics – a suggested definition: the conversion of information in the observed data into a 

meaningful summary of the evidence supporting the truthfulness of various hypotheses related to 

the parameter of interest. 

6. Statistical inference through parametric family of distributions: 

a. Assumption: 𝑥~𝑓𝜃 (where 𝑓𝜃 is a family of distributions). 

b. Goal: estimate 𝜃. 

c. Strategy: analyze available data 𝑋 = {𝑥𝑖} (typically assumed to be iid), while exploiting 

the assumption that 𝒑𝜽(𝑿) significantly depends on 𝜽, i.e. various values of X imply 

different underlying values of 𝜃. 

  

https://en.wikipedia.org/wiki/Fiducial_inference
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Exponential Families, Sufficiency and Information 

Sufficiency 
1. Statistic: a function of the data T(X). 

2. Sufficient statistic wrt parameter 𝜃: 𝑓𝜃(𝑋|𝑇(𝑋)) is independent on 𝜃, i.e. the statistic carries all 

info about 𝜃. 

a. E.g. for iid Bernoulli’s and 𝑇(𝑋) ≔ ∑ 𝑥𝑖
𝑛
1 = 𝑡:  

b. Neyman-Fisher Factorization Theorem: T(X) is sufficient iff 𝑓𝜃(𝑋) = 𝑔𝜃(𝑇(𝑋))ℎ(𝑋). 

i. I.e. f(X) depends on 𝜃 only “through” (i.e. as function of) T(X). 

1. Note: given T, f indeed does not longer depend on 𝜃. 

ii. Allows detection of sufficient statistics directly from the pdf using dirty algebra. 

1. E.g. by writing uniform distribution as: 

 
2. Similarly, (𝑋̅, 𝑠2(𝑋)) is sufficient for 𝜃 = (𝜇, 𝜎2) in Normal distribution. 

3. Minimal sufficient statistic T: any other sufficient U contains all its information, i.e. T=h(U). 

a. Theorem: [T is sufficient] AND [T(x)=T(y) for any x,y that don’t distinguish between 

different 𝜃s (i.e. 𝑝𝜃(𝑥)/𝑝𝜃(𝑦) is independent on 𝜃)]  [T is minimal]. 

4. Ancillary statistic: statistic whose distribution is independent of 𝜃. 

a. Ancillary information: information which is “not about” 𝜃. 

b. Conditioning on ancillary statistics: although ancillary info can’t improve any point-

estimator 𝜃, it may still carry information regarding 𝑽𝒂𝒓(𝜽) (i.e. the confidence of the 

estimation), hence ancillary info should not be disregarded without consideration. 

i. Example: iid X1,X2 with 𝑃(𝜃 − 1) = 𝑃(𝜃 + 1) = 0.5. 𝑋̅ is a sufficient statistic and 

an unbiased estimator of 𝜃, but the ancillary statistic 𝑋2 − 𝑋1 can still tell whether 

𝑋1 ≠ 𝑋2 (hence the estimate is exact) or not. 

ii. In practice, one may infer regarding a parameter using a less-noisy subset of the 

data (even though it throws data away…), where the subset is possibly 

determined by conditioning on an ancillary statistic. 

5. Complete sufficient statistic: contains exactly all the info in X about 𝜃, without ancillary info. 

a. Formal definition: 𝐸𝜃[𝑓(𝑇)] = 0 → 𝑓 ≡ 0 (i.e. each “feature” of 𝑇 has unique info) 

b. Complete  minimal. 

i. The opposite isn’t true: minimal sufficient statistic may contain ancillary info. 

c. Any complete sufficient statistic T is independent of any ancillary statistic U. 

i. In particular, in case of complete statistic T there’s no point in conditioning on 

ancillary statistics, since it would not affect T in any way, including confidence. 

Exponential families 

1. Exponential families: families that can be written as 𝒑𝜽(𝒙) = 𝒉(𝒙)𝒆〈𝜼(𝜽),𝑻(𝒙)〉−𝑨(𝜽). 

a. The dimension d of the inner product 〈𝜂(𝜃), 𝑇(𝑥)〉 = ∑ 𝜂𝑗(𝜃)𝑇𝑗(𝑥)
𝑑
𝑗=1  often corresponds 

to the vector space of 𝜃 (i.e. just a product if 𝜃 is scalar). 

b. Representation: 

i. 𝑒−𝐴(𝜃) may be replaced by 𝑎(𝜃). 
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ii. When considering expectation wrt 𝜃, ℎ(𝑥) may be absorbed into 𝑑𝜇(𝑥) within 

the integral of the expectation. 

2. Most known families (Normal, Exponential, Poisson, Binomial, Geometric, Beta, Gamma) can be 

written as exponential (dirty work). Uniform distribution cannot. 

3. Full rank exponential family: 

a. Definition: 𝜂(𝜃) has non-empty interior and (T1…Td) are not linearly dependent. 

b. Equivalently: 𝑆 ≔ {𝜂(𝜃2) − 𝜂(𝜃1) | 𝜃𝑗 ∈ Θ} spans the whole 𝑅𝑑. 

c. Most known exponential families are full rank. 𝑵(𝜽, 𝜽𝟐) is not, and belongs to curved 

exponential families, whose natural parameter space is a curve (or some other set) 

whose effective dimension is smaller than the actual dimension d. 

4. For exponential family of the form 𝑝𝜃(𝑥) = 𝑎(𝜃)𝑒〈𝜃,𝑥〉 (just d-D exponential dist.?): 

a. 𝐸𝜃(𝑋𝑖) = −
𝜕

𝜕𝜃𝑖
log 𝑎(𝜃) 

b. 𝐶𝜃(𝑋𝑖, 𝑋𝑗) = −
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
log 𝑎(𝜃) 

5. For any exponential family and iid data 𝑋 ≔ (𝑋1…𝑋𝑛), the mean of each dimension over all the 

samples 𝑻(𝑿) ≔ (∑ 𝑻𝒋(𝑿𝒊)
𝒏
𝒊=𝟏 )

𝒋=𝟏

𝒅
 is sufficient. 

a. If the family is full rank – T is complete sufficient. 

b. In the curved family 𝑵(𝜽, 𝜽𝟐), T is minimal but not complete, and there’s no complete 

statistic. 

6. Characterization of sufficiency – mostly only exponential families allow sufficient statistic with 

small dimension independently of the data dimension: 

a. If: [𝑓𝜃(𝑥) is continuously differentiable wrt x] AND [𝑋1…𝑋𝑛 are iid] AND [𝑠𝑢𝑝𝑝(𝑓𝜃(𝑥)) is 

independent of 𝜃]; 

i. Note: uniform distribution’s support depends on 𝜃, hence it’s excluded. 

b. Then: [there exists sufficient statistic of dimension k] ⇔ [𝒇𝜽(𝒙) is exponential family 

with 𝒅 ≤ 𝒌]. 

Fisher information 
1. FI regularity conditions: 𝑠𝑢𝑝𝑝(𝑝𝜃) is independent of 𝜃 + some weak differentiability conditions. 

a. All the discussion in this section assumes the FI conditions on 𝑝𝜃. 

2. Score vector: 𝑠𝑋(𝜃) ≔ ∇𝜃 log 𝑝𝜃(𝑋) 

a. 𝐸𝜃[𝑠𝑋(𝜃)] = 0  (derived from conservation of the sum ∫ 𝑝𝜃(𝑋)𝑑𝜇(𝑋) = 1) 

3. Fisher information – the covariance matrix of the score: 

a.  

i. In particular: 𝑰𝑿(𝜽)𝒊𝒊 = 𝑬𝜽 [(
𝝏 𝐥𝐨𝐠𝒑𝜽(𝑿)

𝝏𝜽𝒊
)
𝟐

] 

ii. Interpretation: how much 𝑿 varies with 𝜽. 

b. Equivalently:  

i. In particular, for iid variables: 𝑰𝑿𝟏…𝑿𝒏(𝜽) = 𝒏𝑰𝑿𝟏(𝜽). 

ii. In general, information is accumulated with increase of data. 

https://www.google.com/url?q=https%3A%2F%2Fen.m.wikipedia.org%2Fwiki%2FExponential_family%23Table_of_distributions&sa=D&usd=2&usg=AFQjCNFjbqH8D-TzfbnheGGmHhQfAurnkA
https://www.google.com/url?q=https%3A%2F%2Fen.m.wikipedia.org%2Fwiki%2FExponential_family%23Table_of_distributions&sa=D&usd=2&usg=AFQjCNFjbqH8D-TzfbnheGGmHhQfAurnkA
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iii. Example – 𝑁(𝜇, 𝜎2) (known 𝜎): 𝐼𝑋(𝜇) = −𝐸𝜇 [
𝜕2

𝜕𝜇2
(𝐶(𝜎) −

(𝑥−𝜇)2

2𝜎2
)] = 1/𝜎2. 

4. For any statistic T, 𝐼𝑋(𝜃) − 𝐼𝑇(𝜃) is positive semidefinite, and 𝐼𝑋(𝜃) − 𝐼𝑇(𝜃) ≡ 0 ⇔ T is sufficient. 

a. In particular for 𝑑𝑖𝑚𝜃 = 1:   𝑰𝑻(𝑿) ≤ 𝑰𝑿, with equality iff T is sufficient. 

5. Cramer-Rao Theorem: for a statistic T of iid 𝑋1…𝑋𝑛 with 𝐸𝜃[𝑇] = 𝑔(𝜃): 

𝑽𝜽(𝑻) ≥ (𝒈′(𝜽))
𝟐
(𝒏𝑰(𝜽))

−𝟏
 

a. Note: if T is an unbiased estimator of 𝜃, then 𝐸[𝑇] = 𝜃 and thus 𝑔′ ≡ 1. 

b. Note: 𝐼(𝜃) here actually means 𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠(𝜃). In particular, in experimental design we 

wish our observations to maximize FI in order to allow accurate estimation of 𝜃. 

i. “Maximize” FI in the non-scalar case is usually associated with some functional of 

FI, e.g. its determinant(?!). 

6. KL-divergence of 𝑝𝜃 from a slight variant of it satisfies 𝑲(𝒑𝜽, 𝒑𝜽+𝝐) ≈ 𝝐𝑻𝑰(𝜽)𝝐 as 𝜖 → 0, which is 

another way to see FI as the sensitivity of the distribution of X to 𝜽. 

7. Cramer-Rao Theorem makes FI a consensus under FI regularity conditions, which covers most 

known families. In other cases (e.g. uniform distribution) there are attempts to generalize, e.g. 

based on the last property. One such generalization is “Hellinger information” (with the 

underlying Hellinger distance ℎ2(𝜃, 𝜃′) ≔ ∫ (𝑝𝜃
1/2 

− 𝑝
𝜃′
1/2 

)
2

 rather than KL-divergence), which 

is currently being formed by the course author. 
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Likelihood 

Likelihood-Based Methods 
1. Likelihood: 𝑳(𝜽) ≔ 𝒑𝜽(𝒙). 

a. Terminology coined by Fisher (1973): intuitively similar to probability (describing how 

plausible 𝜽 is), yet not a probability function (e.g. ∑𝐿(𝜃) ≠ 1). 

2. Maximum Likelihood Estimation (MLE):  𝜃 ≔ argmax
𝜃∈Θ

𝐿(𝜃). 

a. Model which is most likely to have produced the observed x (“best fit”). 

b. Not necessarily minimizing expected estimation error. 

c. The likelihood equation: 𝛁𝒍(𝜽) = 𝟎 (𝒍 ≔ 𝐥𝐨𝐠 𝑳) 

d. Convergence of 𝜃 ∈ Θ ⊂ 𝑅: under certain conditions (mainly smoothness and constant 

𝑠𝑢𝑝𝑝(𝑝𝜃)), if 𝜃𝑛 ≔ 𝜃(𝑥1…𝑥𝑛) is a consistent sequence of solutions to the likelihood eq.: 

√𝒏(𝜽̂𝒏 − 𝜽∗) → 𝑵(𝟎, 𝑰(𝜽∗)−𝟏) in distribution under 𝒑𝜽∗ (where 𝜃∗ ∈ 𝑖𝑛𝑡(Θ)) 

In other words, 𝒆𝒓𝒓(𝜽̂)~
𝟏

√𝒏𝑰(𝜽∗)
. 

i. Since 𝜃∗ and 𝐼(𝜃∗) are unknown, the observed Fisher Information −𝒍𝒏
′′(𝜽̂𝒏) often 

replaces the original FI. 

3. Likelihood ratio tests: 

a. Hypothesis test with the statistic 𝑻𝒏(𝑿𝒏, 𝚯𝟎) ≔ 𝐬𝐮𝐩
𝜽∈𝚯𝟎

𝑳(𝜽) / 𝐬𝐮𝐩
𝜽∈𝚯

𝑳(𝜽). 

b. Wilk’s statistic: 𝑊𝑛 ≔ −2𝑙𝑜𝑔𝑇𝑛. 

i. Wilk’s theorem: 𝑾𝒏 → 𝝌𝟐(||𝚯𝟎||) under 𝜃 ∈ Θ0. 

4. Many desired properties are not universally satisfied for MLE: uniqueness, existence, 

asymptotic normality, consistency. 

a. Example (Neyman-Scott): for 𝑋𝑖1, 𝑋𝑖2~𝑁(𝜇𝑖 , 𝜎
2), MLE yields 𝜇̂𝑖 =

𝑋𝑖1+𝑋𝑖2

2
, 𝜎̂ =

1

𝑛
∑(𝑋𝑖2 −

𝑋𝑖1)
2, and 𝜎̂2 →

1

2
𝜎2 ≠ 𝜎2 is not consistent. 

b. This anomaly is due to the dimension of the nuisance parameter ({𝝁𝒊}) increasing with 

n. In particular, the MLE estimates 𝜇̂𝑖 and 𝜎̂ together, while 𝑉𝑎𝑟(𝜇̂𝑖) = 𝑐𝑜𝑛𝑠𝑡 ↛ 0. This 

can be easily solved by the transformation 𝑌𝑖 ≔ 𝑋𝑖2 − 𝑋𝑖1. 

c. Yet, the author claims that ML is reliable only in cases of very regular distributions, in 

which it is not needed anyway. 

d. Bottom line – avoid assuming likelihood-based methods to work as expected. 

Alternative and Advanced Methods 
1. Bootstrap: use resampling (with replacement) to generate confidence tests & intervals based on 

a single dataset. Simplest form: 

a. The data 𝑋 = 𝑋1…𝑋𝑛 leads to 𝜃. 

b. For b=1:B: resample (with replacement) {𝑋𝑏𝑖
∗ }𝑖=1

𝑛 , leading to 𝜃𝑏
∗. 

c. Approximate the distribution of 𝜃 using {𝜃𝑏
∗}, and estimate confidence accordingly. 

d. This is justified by the fundamental theory of statistics – empirical distribution 

convergence to the true distribution – though it’s unclear how it can be assumed in 

advance that there’s sufficient data for approximate bootstrap confidence estimation, 

without assuming that 𝜃 is a good approximation as well anyway. 

https://www.researchgate.net/publication/235221369_Revisiting_the_Neyman-Scott_model_an_Inconsistent_MLE_or_an_Ill-definedModel
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e. Basic bootstrap doesn’t work universally (some specific failures are known), hence can’t 

be used blindly. More advanced and non-intuitive bootstrap methods solve some of the 

problems, and also guarantee higher-order accuracy(?). 

2. Monte-Carlo sampling: 

a. “The focus on asymptotic theory is arguably driven by tradition – when … were no 

computers available, … only asymptotic analytical approximations were possible.” 

b. Given some 𝐻0: 𝜃 = 𝜃0, sample many datasets 𝑋1…𝑋𝑛~𝑝𝜃0, calculate the corresponding 

test statistics {𝑈𝑖}1
𝑛, and determine p-value according to the quantile of the actual statistic 

𝑈 among the simulated distribution of {𝑈𝑖}. 

i. This allows exact inference – without asymptotic analysis. 

ii. Plausibility functions are mentioned but not clearly explained. 

c. If 𝐻0 is more general and does not fully specifies 𝜃, then such simulation is problematic. 

Sometimes it can be shown that the statistic is independent of the unspecified 

components of 𝜃. Alternatively, it is possible to run simulations with various parametric 

assumptions. 

3. Marginal & conditional likelihood: 

a. Goal – handle nuisance parameters: for 𝜽 = (𝝍, 𝝀), infer on 𝝍 with minimal effect of the 

uncertainty in 𝜆 (which normally affects the whole MLE 𝜃). 

b. If the data X can be represented (one-to-one mapping) as (𝑆, 𝑇) such that 𝑝𝜃(𝑋) =

𝑝𝜃(𝑆, 𝑇) = 𝒑𝜽(𝑺)𝒑𝝍(𝑻|𝑺) (i.e. only 𝜓 affects T) then inference about 𝜓 can be done 

using conditioning on S through the marginal distribution of T. 

c. Note: such decomposition may throw away information about 𝜓 in 𝑝𝜃(𝑆), but the 

elimination of the nuisance parameter 𝜆 may be worth it. 

d. Example – Neyman-Scott: the decomposition 𝑆𝑖 ≔ 𝑋𝑖1 + 𝑋𝑖2, 𝑇 ≔ 𝑋𝑖2 − 𝑋𝑖1 derives 

exactly the solution suggested above. 

e. The challenge is to find such decomposition X=(S,T). A semi-general method is available 

for the subset of exponential families that satisfy 𝑝𝜃(𝑥)~𝑒
〈𝜓,𝑇(𝑥)〉+〈𝜆,𝑆(𝑥)〉−𝐴(𝜓,𝜆). An 

application in the context of logistic regression was given by Boos & Stefanski (2013). 

4. Asymptotic expansions: 

a. According to CLT, 𝑆𝑛 = √𝑛(𝑋̅ − 𝜇)/𝜎 → 𝑁(0,1). It is claimed that this is a 2nd-degree 

Taylor approximation of the actual distribution (derived from its moment-generating 

function), and that more accurate approximations (which are beneficial for finite n…) can 

be achieved using higher orders (higher moments). 

b. Note: both MLE & Wilk’s statistics are private cases: inference about them typically uses 

Normal approximation of the statistic’s distribution. 

The likelihood principle 
1. Likelihood principle: two datasets which derive equivalent likelihoods (i.e. 𝐿1(𝜃) = 𝑐 ⋅ 𝐿2(𝜃)), 

should result in the same inference regarding 𝜃. 

2. Sampling-distribution: the distribution of a statistic of data assuming some probabilistic model. 

a. Sampling-distribution-based method: inference by comparing the value of a test statistic 

to its sampling-distribution (e.g. hypothesis tests, and in particular likelihood-ratio test). 
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b. The sampling-distribution of a statistic depends on the experiment’s setup (in particular 

on the stop condition), thus the inference from certain data may depend on the setup, 

hence sampling-distribution-based inferential methods violate the likelihood principle. 

3. History of necessity of the likelihood principle: 

a. Sufficiency principle: two datasets which derive the same sufficient statistic 𝑇, should 

result in the same inference regarding 𝜃. 

b. Conditionality principle: if two experiments are considered, and only one is randomly 

(independently of 𝜃) chosen, the inference regarding 𝜃 should be based only on the 

actually-conducted experiment. 

c. Birnbaum (1962): sufficiency & conditionality  likelihood. 

i. Since both are typically considered necessary (unclear to me why sufficiency is 

more consensus than likelihood…), it means that the likelihood principle is 

necessary as well. 

ii. The Bayesian approach is the only known one which satisfies the likelihood 

principle (unless the prior depends on the experiment as in objective priors). In 

particular, frequentist methods are “illogical” in the sense of these principles. 

iii. Evans (2013) & Mayo (2014): Birnbaum’s claim is actually false. 

4. Example: for Bernoulli with 𝐻0: 𝜃 =
1

2
, 𝐻𝐴: 𝜃 >

1

2
, the data X=(1,0) can lead to different p-values: 

a. T = num of 1s in 2 samples: 𝑃𝜃0(𝑇 ≥ 1) = 𝑃(1) + 𝑃(> 1) = 2 ⋅
1

4
+ 1 ⋅

1

4
       =

3

4
 

b. T = num of 1s until first 0:    𝑃𝜃0(𝑇 ≥ 1) = 𝑃(1) + 𝑃(> 1) =
1

4
+∑ (

1

2
)
𝑇+1

∞
2 =

2

4
 

c. Note: the likelihoods 𝐿1(𝜃) = 𝑃𝜃(𝑇 = 1) = 2 ⋅ 𝜃(1 − 𝜃) and 𝐿2(𝜃) = 𝑃𝜃(𝑇 = 1) =

𝜃(1 − 𝜃) are indeed equivalent, so the likelihood principle is indeed violated. 

d. The key is that the question “how likely was it to observe data D(X) as extreme or more 

than X” is not well defined – D(X) = “as extreme as X=(1,0)” refers to unobserved (and 

arguably arbitrary) dataset, which is different in each case: 

 X = #1 in 2 samples X = #1 until 0 

T = 0 {(0,0)} P = ¼ {(0)} P = ½ 

T = 1 {(1,0), (0,1)} P = ½ {{1,0)} P = ¼ 

T > 1 {(1,1)} P = ¼ {(1,1,0), (1,1,1,0)…} P = ¼ 

e. Note that each experiment drew the X=(1,0) from a different probability space, hence the 

result receives different interpretation. In particular, the second experiment’s 

probability space includes more (probable) elements corresponding to T=0, and less 

elements corresponding to T=1, thus the experiment design affects the expected results. 

f. The key difference between the frequentist and the Bayesian approaches in this context 

is that the former asks “how likely is X for this 𝜽 compared to other Xs?” (𝑃(𝑇 > 𝑡)) 

while the latter asks “how likely is X for this 𝜽 compared to other 𝜽s?” (𝑃(𝜃)). 

5. Is it really a problem that the p-value depends on the context of the experiment? 

a. Consider T = rate of 1s until [rate of 1s > 𝟏/𝟐 + 𝟐𝝈𝟎/√𝒏 = 𝟏/𝟐 + 𝟏/√𝒏]. 

i. Note: this stops within finite time with probability 1. 

b. When stops after 𝑛 repetitions, the result of the experiment is guaranteed to reject 𝑯𝟎 

with 𝛼 = 5% if interpreted as a standard n-repetitions experiment. Thus, it is clear that 

https://arxiv.org/abs/1302.7021
https://www2.isye.gatech.edu/~brani/isyebayes/bank/handout2.pdf
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the inference must consider the context in which the data was generated, namely the 

sampling distribution. 

c. Mayo (2014): For the sampling theorist, to report a 1.96 standard deviation difference 

known to have come from optional stopping, just the same as if the sample size had been 

fixed, is to discard relevant information for inferring inconsistency with the null, while 

“according to any approach that is in accord with the strong likelihood principle, the fact 

that this particular stopping rule has been used is irrelevant.” [Cox and Hinkley (1974), 

page 51.]. 

d. Actually there’s a lot of (not always consistent) material out there about Bayesians vs. 

frequentists dealing with stopping rules, and it seems to depend a lot on how exactly 

each of the two tries to handle the stopping rule. See for example 1,2,3. 

i. In particular, Bayesian approach can handle this by using an objective prior (see 

Bayesian Inference \ Choice of priors) such as Jeffreys prior ∝ √𝐼𝑋(𝑝), though it 

costs in loss of the likelihood principle. 

e. Fisher information of the binomial test is 
𝟐

𝒑(𝟏−𝒑)
, while for the geometric one it is 

𝟏

𝒑(𝟏−𝒑)𝟐
. 

i. Note: both tests are similarly informative for 𝑝~
1

2
, while the latter is better as 

𝑝 → 1, i.e. it has better resolution to distinguish 0.9 from 0.8 than 0.2 from 0.1 – 

which isn’t surprising as for larger p we’d expect to essentially have more data. 

6. In summary of this section, I’d say that: 

a. The likelihood principle doesn’t make much sense, as it essentially ignores the mechanism 

which generates the data, and leads to paradoxes of fake significance. 

b. With careful formulation, probably both frequentists and Bayesians can handle this issue, 

though it feels less natural in the Bayesian framework. 

c. In any case, we should never forget: 

“We have to remember that frequentism and Bayesianism are different things, that answer different 

questions, whose basic object of study just happens to have the same name – probability – but is not the 

same thing at all. To a frequentist, it’s a limiting frequency; to a Bayesian, it’s a measure of uncertainty. 

They agree a lot, but sometimes they don’t.” (rationalistramble) 

  

https://arxiv.org/pdf/1302.7021.pdf
https://www.ejwagenmakers.com/2007/StoppingRuleAppendix.pdf
http://doingbayesiandataanalysis.blogspot.com/2013/11/optional-stopping-in-data-collection-p.html
https://rationalistramble.wordpress.com/2015/12/07/stopping-rules-p-values-and-the-likelihood-principle/
https://rationalistramble.wordpress.com/2015/12/07/stopping-rules-p-values-and-the-likelihood-principle/


Ido Greenberg  2019 

15 
 

Bayesian Inference 

Background 
1. Frequentist approach: 

a. Given some procedure, study a random variable (point estimator, confidence interval, 

etc.) in terms of behavior in repeated sampling. 

b. Can’t say anything about the probability that some hypothesis is true – only likelihood 

of data given that hypothesis. 

2. Bayesian approach: 

a. Axiom: uncertainties can only be described with probability. 

b. Prior distribution of a parameter expresses one’s uncertainty and belief rather than values 

of the parameter in some repeated sampling procedure. 

i. Similarly to “there’s 50-50 chance that I’ll come to the party”. 

ii. Allows to express researcher’s beliefs regarding the phenomenon. 

c. Parameters are still considered constant unknowns rather than random variables, but the 

axiom derives similar mathematical treatment for both types. 

Bayesian analysis 
1. Notation: 𝜃=value, Θ=variable (also parameter space, distinguish will be clear in context). 

2. Hierarchical model: 𝚯~𝚷 (prior distribution) and 𝑿|(𝚯 = 𝜽)~𝒑𝜽(𝒙). 

3. Inference is based on posterior distribution 𝜋𝑥(𝜃) through Bayes theorem: 𝜋𝑥(𝜃) =
𝜋(𝜃)𝑝𝜃(𝑥)

𝑝Π(𝑥)
∝

𝜋(𝜃)𝑝𝜃(𝑥). 

4. Marginalization (𝜃 = (𝜓, 𝜆) where only 𝜓 is of interest) – straightforward from the rules of 

probability: 𝜋𝑥(𝜓) = ∫ 𝜋𝑥(𝜓, 𝜆)𝑑𝜆. 

a. Prediction as a private case of marginalization: 𝜋{𝑥𝑖}1𝑛(𝑥𝑛+1) = ∫ 𝜋{𝑥𝑖}1𝑛(𝜃, 𝑥𝑛+1)𝑑𝜃. 

b. Claim: any “rolling” prediction rule (i.e. 𝑋1~𝑝0 & after n observations 𝑋𝑛+1~𝑝{𝑥𝑖}1𝑛 =

𝑓(𝑥1…𝑥𝑛)) which permits change of observations order (i.e. 𝑓 is invariant to input 

permutations) must be a private case of such a Bayesian rule. 

5. Point estimation: 

a. 𝜽̂𝒎𝒆𝒂𝒏 ≔ 𝐸[Θ|𝑋 = 𝑥] = ∫ 𝜃𝑑Π𝑥(𝜃) (minimizing L2 error) 

b. 𝜽̂𝒎𝒐𝒅𝒆 ≔ argmax
θ

𝜋𝑥(𝜃)  (essentially ML that assumes prior on 𝜃) 

6. Set (interval) estimation: 

a. 𝟏 − 𝜶-credible set: 𝐶 ⊂ Θ such that Πx(𝐶) = 1 − 𝛼. 

b. Centered confidence interval:  𝐶 = [𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒Πx
(𝛼/2) , 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒Πx

(1 − 𝛼/2)] 

c. Highest-density confidence set: 𝐶 = {𝜃 ∶ 𝜋𝑥(𝜃) ≥ 𝑐𝛼} (𝑐𝛼 is chosen such that Π𝑥(𝐶) =

1 − 𝛼) 

d. Note: unlike frequentist confidence interval, the coverage probability (given the true 𝜃0 

– the probability that 𝐶 will contain 𝜃0) is not necessarily 𝟏 − 𝜶 (due to sensitivity to the 

prior – e.g. if Π(𝜃0) = 𝜖 ≪ 1, then 𝐶 is less likely to contain 𝜃0). 

7. Hypothesis test: 𝜃 ∈ 𝐻 for some 𝐻 ⊂ Θ is rejected if 𝜶 > 𝚷𝒙(𝑯) =
∫ 𝑝𝜃(𝑥)𝑑Π(𝜃)𝐻

𝑝Π(𝑥)
. 
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 Frequentist Bayesian 

Point estimate 

𝜽̂ 

Find 𝜃 for which the data is likely Find probable / probably-approximate 𝜃 

Interval 
estimate 

𝑰𝑿 

Confidence interval: generate 𝐼𝑋 in a way 
that independently on 𝜃, it would satisfy 
𝜃 ∈ 𝐼𝑋 with large probability 

Credible interval: generate 𝐼𝑋 such that 
𝑃(𝜃 ∈ 𝐼𝑋 | 𝑋) is large 

Hypothesis test 
𝑯𝟎 ⊂ 𝚯 

Given H0, how likely is it to observe as 
extreme data as X? 
(considering all Xs and only the tested 𝜃) 

Given X, how probable is H0? 
(considering all 𝜃s and only the 
observed X) 

 

Choice of priors 
1. Accuracy can be very sensitive to the choice of prior. For example: 

a. Let 𝜇~𝑁(0,1),   𝑋~𝑁(𝜇, 1),   𝜇0 ≔true 𝜇,   𝑋̅ = ML estimator,   𝜇̂ ≔ argmax(𝜋𝑥(𝜇)). 

b. 𝑴𝑺𝑬(𝑿̅) ≔ 𝐸𝜇0[(𝑋̅ − 𝜇0)
2] =

𝟏

𝒏
, 𝑴𝑺𝑬(𝝁̂) =

𝝁𝟎
𝟐+𝒏

(𝒏+𝟏)𝟐
. 

2. Prior elicitation: detailed quantification of domain knowledge in terms of prior distribution – 

usually impractical. 

3. Conjugate priors-class: family of distributions 𝐹 such that Π ∈ 𝐹 ⇒ Π𝑥 ∈ 𝐹. Makes analysis easy. 

For example: 

a. 𝑋~𝑁(Θ, 𝜎2) (known 𝜎), Θ~𝑁(𝜔, 𝜏2)  Θ|𝑋̅~𝑁 (
𝑛𝜏2

𝜎2+𝑛𝜏2
𝑥 +

𝜎2

𝜎2+𝑛𝜏2
𝜔,

𝜎2𝜏2

𝜎2+𝑛𝜏2
). 

b. 𝑋~𝑃𝑜𝑖𝑠(Θ), Θ~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)  Θ|𝑋̅~𝐺𝑎𝑚𝑚𝑎 (𝑛𝑥 + 𝑎,
1

𝑛+1/𝑏
). 

c. Conjugate classes can be extended by mixtures of conjugate priors. 

4. Nowadays it is unnecessary to choose priors just for convenience, since numerical methods can 

be used to estimate Π𝑥, e.g. Markov-Chain Monte-Carlo (MCMC). 

5. It is also possible to try several different priors and hope for consistent inference. 

6. Improper prior: prior which is not a probability function (e.g. uniform 𝜋(𝜇) = 1). 

a. Posterior can still be calculated (in the example simply 𝜋𝑥 ∝ 𝑀𝐿). 

b. In general, probability theory can be extended to improper priors (keeping much of the 

theory and in particular Bayes theorem) by either allow infinite probabilities or remove 

countable additivity (only assume finite additivity). 

7. Objective prior: 

a. Jeffreys prior:  𝝅(𝜽) ∝ √𝐝𝐞𝐭(𝑰𝑿(𝜽)). 

i. Θ is distributed uniformly wrt the geometry induced by Riemannian metric 

(determined by FI). 

1. Euclidean-uniform under FI=const, as in location parameters, and in 

particular improper in these cases. 

ii. Non-informativity: Minimizing asymptotic KL-divergence between prior & 

posterior. 

iii. Credible sets approximately satisfy coverage properties of frequentist methods. 

b. All objective priors (e.g. Jeffreys, invariant priors) are improper under common models. 
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c. Bayesian inference satisfies the likelihood principle (inference depending only on 

likelihood of data) only given a certain prior. Objective priors depend on the experimental 

setup (e.g. through FI as in Jeffreys prior) and thus do not respect the likelihood principle. 

Exchangeability 
1. 𝑋1…𝑋𝑛 are exchangeable if their joint distribution is invariant to permutations, i.e. their order is 

“irrelevant”. 

a. An infinite series of variables is exchangeable if any finite subset is exchangeable. 

2. Despite looking much weaker assumption than iid, infinite exchangeable series turn out to be 

conditionally iid under certain conditions: 

a. deFinetti’s theorem: binary variables 𝑋1…𝑋𝑛 are exchangeable iff there’s random 

variable Θ in [0,1] such that 𝑋𝑖|(Θ = 𝜃) ~𝐵𝑒𝑟(𝜃). 

b. Note: exchangeability derives existence of prior but does not help to find it. 

3. Generalizations to non-binary variables (e.g. Hewitt-Savage) are available (but complicated). 

Asymptotic Bayesian theory 
1. Laplace approximation (𝜃 ∈ 𝑅𝑝, 𝜃 ≔ argmax

θ
ℎ(𝜃)): 

∫ 𝑞(𝜃)𝑒𝑛ℎ(𝜃)𝑑𝜃 = 𝑞(𝜃)𝑒𝑛ℎ(𝜃̂) ⋅ √(
2𝜋

𝑛
)
𝑝 1

det (−ℎ′′(𝜃))
⋅ (1 + 𝑂 (

1

𝑛
)) 

a. Allows calculation of integral without integration – only optimization (argmax ℎ). 

b. Useful for a variant of applications (e.g. Stirling’s approximation of n!), and in particular 

common integration problems in Bayesian statistics. 

2. Bernstein-von Mises theorem: the posterior of 𝚯 is asymptotically normally-distributed around 

any consistent estimate 𝜽̂, with variance 
𝟏

𝒏𝑰(𝜽∗)
 (𝜃∗ is apparently the true value). 

a. More specifically: under certain conditions (mainly smoothness and constant 𝑠𝑢𝑝𝑝(𝑝𝜃), 

and the prior being continuous & positive at 𝜃∗), any consistent sequence 𝜃𝑛 of solutions 

to the likelihood equation satisfies √𝑛(Θ − 𝜃𝑛) → 𝑁(0,1/𝐼(𝜃∗) in 𝑃𝜃∗-probability. 

3. Conclusion: the posterior mean is asymptotically similar to any consistent likelihood-based 

estimate – almost independently of the prior. 

a. Specifically: under the same conditions as above, and assuming 𝐸Π(𝜃) < ∞, the posterior 

mean 𝜽̃𝒏 ≔ 𝑬[𝚯|𝑿] satisfies √𝒏(𝜽̃𝒏 − 𝜽̂𝒏) → 𝟎 and √𝒏(𝜽̃𝒏 − 𝜽∗) → 𝑵(𝟎, 𝟏/𝑰(𝜽∗)). 

Belief functions, additional topics and references 
1. Bayesian methodology and philosophy: Berger (1985), Ghosh (2006). 

2. Bayesian modeling and methodology: Gelman (2004). 

3. Hypothesis tests with 𝜋(𝐻0) = 0 (e.g. 𝐻0 = {𝜃0}): Bayes factors, Ghosh (2006). 

a. Bayes factors are not functions of the posterior, thus not really Bayesian. 

4. Monte-Carlo numerical integration: Robert & Casella (2004). 

5. Belief functions and inferential models (IM): Martin and Liu (2013, 2015). 

a. If nothing supports either A or AC, belief functions allow expressing small evidence of any 

of the two, instead of the strict tradeoff 𝑃(𝐴) + 𝑃(𝐴𝐶) = 1 existing in probability. 
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Dempster-Shafer theory of belief functions 
6. Dempster-Shafer theory suggests a way to summarize evidence in favor of various possibilities 

within a discrete space 𝑋 (e.g. red / yellow / green), and express degrees of belief 

(/confidence/trust) in subsets of these possibilities. 

7. Mass 𝑚:2𝑋 → [0,1] represents the evidence in favor of each specific subset (e.g. non-green 

evidence increases red-or-yellow mass), assigns 0 mass to empty set, and is normalized to sum 1. 

It is yet interpreted as normalized amount of evidence and NOT as probability, since e.g. 

mass(yellow-or-red) may be smaller than mass(red). 

a. Dempster’s rule can define masses as combination of info from multiple sources. It can 

be seen as a generalization of Bayes rule. Jøsang claimed it should be only interpreted as 

fusion of belief-constraints from different sources. 

8. Belief (/support) = how strongly we believe it to be true = total amount of supporting evidence 

= sum of masses of contained subsets. 

a. E.g. belief of yellow-or-red = masses sum of yellow, red & yellow-or-red. 

9. Plausibility = lack of conflict with observed evidence = 1 – amount of evidence against = 1 – sum 

of masses of non-intersecting subsets. 

a. E.g. plausibility of yellow-or-red = 1 – mass of green = masses sum of yellow, red, yellow-

or-red, red-or-green & yellow-or-green. 

b. In particular 𝑝𝑙(𝐴) = 1 − 𝑏𝑒𝑙(𝐴𝐶). 

10. While belief and plausibility can be generalized to infinite 𝑋, mass can’t. 

11. In summary, Dempster-Shafer theory allows distinction between evidence in favor (belief) and 

lack of evidence against (ignorance). 

a. Lack of evidence can be expressed as most mass going to the large subsets (red-or-yellow-

or-green) and result in high plausibility but low belief for every possibility. In other words, 

the gap between plausibility and belief expresses ignorance. 

b. On the other hand, much conflicting / contradicting info can be expressed as mass going 

to non-intersecting subsets, increasing each’s belief but also reducing each other’s 

plausibility. 

12. A newer attempt – apparently to summarize belief and plausibility into posterior info which does 

not depend on a subjective prior – was published by Martin & Liu in 2013 (Inferential Models: A 

Framework for Prior-Free Posterior Probabilistic Inference). 

  

https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory
https://www.google.com/url?q=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F01621459.2012.747960&sa=D&usd=2&usg=AFQjCNEOc_AB_2cxoiTOJILsvnzxummbQA
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Decision Theory 

Basic definitions 
1. Goal: make decisions that minimize some cost under uncertainty. 

2. Can be seen as game theory problem where players are the statistician and the “nature” (who 

knows the true value of the parameter). 

3. Setup: 

a. Probability space (𝑋, Α, {𝑝𝜃: 𝜃 ∈ Θ}) 

b. Action space 𝐴 

c. Loss function 𝐿: Θ × 𝐴 → [0,∞) (cost of an action given the parameter value) 

4. Examples: 

a. Hypothesis test: Θ = {0,1} (𝐻0/𝐻1), 𝐴 = {0,1} (accept/reject), 𝐿(0,0) = 𝐿(1,1) = 0, 

𝐿(0,1) = 𝐿(1,0) = 1. 

b. Point estimation (of 𝜓(𝜃)): 𝐴 = 𝜓(Θ) (estimate), 𝐿(𝜃, 𝑎) = (𝑎 − 𝜓(𝜃))
2
 (squared-error 

of estimate). 

5. Decision rule – choose action (or randomized action) according to observed data: 

a. Deterministic:  𝛿: 𝑋 → 𝐴     𝐿 = 𝐿(𝜃, 𝛿(𝑥)) 

b. Randomized:  𝛿: 𝑋 → measure functions on 𝐴  𝐿 = 𝐸𝛿[𝐿(𝜃, 𝑎)] =

∫ 𝐿(𝜃, 𝑎)𝛿(𝑥)(𝑑𝑎)
𝐴

 

i. Note: randomized decision rules are sometimes used in discrete hypothesis tests 

to allow choosing a specific confidence level – where none of the possible discrete 

rejection-thresholds corresponds to this confidence level. 

6. Risk function – expected loss of a decision rule: 

a. 𝑅(𝜃, 𝛿) ≔ 𝐸𝜃[𝐿(𝜃, 𝛿(𝑋)] = ∫ 𝐿(𝜃, 𝛿(𝑥))𝑃𝜃(𝑑𝑥)𝑋
. 

b. In general, there’s no uniform risk minimization argmin
𝛿

𝑅(𝜃, 𝛿) for all 𝜃. 

Admissibility 
1. 𝛿 is inadmissible if it is dominated by some 𝛿′ (i.e. ∀𝜃: 𝑅(𝜃, 𝛿′) ≤ 𝑅(𝜃, 𝛿), with strict inequality 

for some 𝜃). 

a. Inadmissible decisions rules usually don’t need to be considered. 

b. Note: in point-estimation of 𝜃, 𝛿(𝑥) ≡ 42 is admissible (better than any other rule if 𝜃 =

42), yet it isn’t a reasonable rule. 

2. Rao-Blackwell: under convex loss function, only functions of sufficient statistics can be 

admissible deterministic decision rules. 

a. Specifically – for action space 𝐴 ⊂ 𝑅𝑑 – a dominating rule is 𝛿1(𝑡) ≔ 𝐸[𝛿0(𝑋)|𝑇 = 𝑡]. 

i. That’s expectation over the action space, which is independent of 𝜃 as long as T 

is sufficient (thus 𝑝𝜃 depends on X only through T). 

ii. Actually all rules are functions of the data X which is a sufficient statistic, so it’s 

not very clear… maybe minimal sufficient? 

b. Example – estimating 𝑃(𝑋 < 𝑐) = Φ(𝑐 − 𝜃) for 𝑋1…𝑋𝑛~𝑁(𝜃, 1). A natural estimator is 

𝑚𝑒𝑎𝑛(𝑋 < 𝑐) = 1/𝑛 ⋅ ∑𝐼(−∞,𝑐)(𝑥𝑖), but it’s not a function of 𝑇 = 𝑋̅, thus for the convex 

loss (𝑎 − Φ(𝑐 − 𝜃))
2

, a dominating rule is 𝐸[𝛿0(𝑋)|𝑡] =
1

𝑛
∑𝐸[𝐼(−∞,𝑐)(𝑋𝑖)|𝑡] =

𝑃(𝑋1 < 𝑐|𝑡) = ⋯. 
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3. Given a randomized decision rule, a new probability space 𝑋̃ = (𝑋, 𝑈) can be built such that U 

expresses the randomization of the action, and wrt this space the decision rule is deterministic, 

and not a function of a sufficient statistic. Thus, all randomized decision rules are (at least 

weakly) inadmissible under convex loss function. 

a. In particular loss of estimation is usually convex (e.g. L2-error) – hence doesn’t require 

randomized estimator. 

b. Stein’s paradox: standard estimators (MLE, least-squares) for mean of multi-dimensional 

Gaussian 𝑁(𝜃, 𝐼) are inadmissible wrt L2-error loss of all 𝜃 elements simultaneously. 

4. Complete class of decision rules: one which covers all the admissible rules. 

a. E.g. all function-of-sufficient-statistic decision rules under convex loss, or all deterministic 

rules under such loss. 

b. Minimal complete class: no subset of it is still complete. 

i. Such class is actually the set of all admissible decision rules. 

Minimizing average risk 
1. Bayes risk: 𝒓(𝚷, 𝜹) ≔ 𝑬𝚷[𝑹(𝜽, 𝜹)] wrt some prior 𝜋(𝜃). 

2. Bayes rule: 𝜹𝚷 ≔ 𝐚𝐫𝐠𝐦𝐢𝐧
𝛅

𝒓(𝚷, 𝜹) (if exists). 

3. Posterior risk: ∫ 𝐿(𝜃, 𝛿(𝑥))Π𝑥(𝑑𝜃)Θ
. 

a. By change of integration order, 𝑟(Π, 𝛿) = ∫ (𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑠𝑘)𝑃Π(𝑑𝑥)𝑋
, thus minimizing 

posterior risk is useful to find the Bayes rule. For example: 

i. Squared error:  𝛿Π(𝑥) = 𝐸(𝜃|𝑥) =mean of posterior. 

ii. Absolute error:  𝛿Π(𝑥) =median of posterior. 

4. Any (continuous with finite risk) Bayes rule is admissible (since any dominating rule would in 

particular be better wrt the Bayes risk). 

a. Does any admissible rule minimize average (Bayes) risk according to some weights (prior)? 

5. Generalized Bayes rule: Bayes rule wrt some measure 𝚷 which isn’t necessarily a probability (in 

particular 𝑋 may have infinite measure). 

a. It is argued that such improper prior is clearly legit here since it’s a technical tool used to 

build decision rules with “good” properties, without any probabilistic interpretation. 

b. Posterior may be improper as well. Admissibility is still guaranteed if R is Π-integrable, but 

this often doesn’t hold – e.g. for 𝑋~𝑁(𝜇, 1) and 𝜋(𝜇) = 1, risk of 𝛿(𝑥) = 𝑥   (which is also 

MLE) is constant, thus not integrable. 

6. A decision rule is admissible if it is the “limit” (in terms of risk) of generalized Bayes rules of 

finite-measure priors (as long as these measures don’t “neglect” open sets). 

a. Specifically: if R is continuous, {Π𝑠}1
∞ are finite (not necessarily 1-sum) measures with 

existing generalized Bayes rules 𝛿𝜋𝑠, liminf Π𝑠 > 0 for any open set, and 𝑟(Π𝑠, 𝛿) −

𝑟(Π𝑠, 𝛿Πs
) → 0, then 𝛿 is admissible. 

b. If case of exponential-family model, the series of measures converges (at least in 

subsequence) Π𝑠𝑛 → Π, thus this limit is itself a generalized Bayes rule 𝛿Π. 

c. All these “limits” of generalized Bayes rules form a complete class. 

d. Example: for 𝑋~𝑁(𝜇, 1) and Π𝑠 ≔ √𝑠𝑁(0, 𝑠) → 𝑐𝑜𝑛𝑠𝑡, MLE is 𝛿(𝑥) = 𝑥 and generalized 

Bayes rule is 𝛿𝑠(𝑥) =
𝑠

𝑠+1
𝑥. Bayes risks difference wrt squared-error loss ((𝛿(𝑥) − 𝜇)2) is 

√𝑠 − 𝑠3/2/(𝑠 + 1)  → 0, so MLE is admissible. 

https://en.wikipedia.org/wiki/Stein%27s_example
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e. Generalized admissibility theorems are available for standard estimators in exponential 

families. 

Minimizing maximum risk 
1. Minimax decision rule 𝛿0:  ∀𝛿: sup

𝜃
𝑅(𝜃, 𝛿0) ≤ sup

𝜃
𝑅(𝜃, 𝛿). 

a. Decision mechanism which is focused on minimizing worst-case scenario’s cost. 

b. Originated in zero-sum games & adversary situations – often less relevant in statistical 

decision problems. 

c. In certain problems, where conventional estimators like MLE are disadvantageous (e.g. 

if the parameter’s dimension increases with the data), then asymptotically minimax 

procedures can provide useful benchmark. 

2. Theorem: a constant-risk Bayes rule (sup
𝜃

𝑅(𝜃, 𝛿Π) = 𝑟(Π, 𝛿Π) ≔ 𝐸Π[𝑅(𝜃, 𝛿Π)]) is minimax. 

a. Accordingly, minimax rules can be found by setting parameters of the prior such that 

the risk will be independent of 𝜽. 

b. Least-favorable prior: such “worst-case scenario” prior, for which average risk = max risk. 

i. Least-favorable prior Π induces the Bayes rule 𝛿Π with the largest risk 𝑟(Π, 𝛿Π). 

3. The standard estimator 𝑋̅ in location problems under the squared-error loss is a minimax rule (as 

admissible rule with constant risk). 

4. For 1 sample of d-dimensional 𝑋~𝑁𝑑(𝜃, Σ) (with known Σ), 𝑋 is a minimax estimator under any 

loss 𝐿(𝜃, 𝑎) = 𝑊(𝑎 − 𝜃) for bowl-shaped (i.e. symmetrically-increasing around the origin) 𝑊. 

Minimizing risk under constraints 
1. Minimizing a function of the risk (mean/max over 𝜃 as above) is required since no decision rule 

minimizes the risk uniformly for all 𝜃. However, uniform minimization of risk is sometimes 

possible for a constrained class of decision rules. 

2. Unbiasedness constraints: 

a. Reminder – unbiased estimator: ∀𝜃: 𝐸𝜃[𝜃] = 𝜃. In other words, if 𝜃 is correct, then it is 

“expected” to be estimated. A generalization for decision rules says that if 𝜃 is correct, 

then its expected Loss is the smallest in Θ. 

b. Unbiased decision rule 𝛿: 𝑬𝜽[𝐿(𝜽, 𝛿(𝑋))] ≤ 𝑬𝜽[𝐿(𝜽
′, 𝛿(𝑋))]   ∀𝜃′ 

c. Theorem: Bayes estimators are biased (up to some degenerated priors). 

d. Lehmann-Scheffe: by Rao-Blackwell (above), only a function of sufficient statistic T can be 

admissible rule 𝛿. If T is also complete and only unbiased rules are considered, then 𝜹 is 

unique and uniformly minimizes the risk. 

i. Specifically: in estimation problem (of some 𝑔(𝜃)) with complete sufficient 

statistic T and convex loss, if an unbiased estimator exists, then it’s essentially 

unique, a function of T, and uniformly minimizes the risk. 

ii. Note: unbiased estimator does not always exist (e.g. estimating 1/𝜃 in 𝐵𝑖𝑛(𝑛, 𝜃)). 

3. Equivariance constraints: if we only consider invariant decision rules (i.e. with structure of the 

form 𝛿(𝑔𝑥) = 𝑔̃𝛿(𝑥), such as standard location & scale estimators), then under some conditions, 

uniform risk minimization can be achieved as Bayes rule wrt corresponding prior. 

a. Invariant function satisfies 𝑓(𝑔𝑥) = 𝑓(𝑥) wrt some group of transformations {𝑔: 𝑋 → 𝑋}. 

b. Equivariant function satisfies 𝒇(𝒈𝒙) = 𝒈̃𝒇(𝒙) wrt some two groups of transformations. 
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i. E.g. standard location estimator 𝑥  wrt shifts {𝑔𝑑(𝑥) = 𝑥 − 𝑑}𝑑 and 𝑔̃ = 𝑔: if 𝑥 is 

shifted by 𝑑 then so is the estimate. Also scale estimator wrt multiplication. 

c. Invariant decision problem: only equivariant decision rules; and loss function doesn’t 

change under transformed 𝜃 along with correspondingly-transformed 𝑎. 

d. In invariant decision problem, under certain assumptions, if Bayes rule wrt a certain prior 

(right invariant Haar prior) exists, then it minimizes risk uniformly over equivariant rules. 

i. Haar measure: measure of volume of sets which is invariant to some chosen 

group of topological operations (e.g. Lebesgue measure wrt constant additions). 

4. Type I error constraints: 

a. In hypothesis tests, the tradeoff between type-I & type-II errors is usually handled by 

fixing type-I error and minimizing type-II error. 

b. For simple-vs.-simple hypotheses, Neyman-Pearson tells that for certain significance 𝛼, 

the most powerful test is given by determining a threshold 𝑘𝛼 for the likelihood ratio 

𝑝1(𝑥)/𝑝0(𝑥) – smaller decides to accept 𝐻0, larger decides to accept 𝐻1, and equal (in 

discrete-data problems, where it is not zero-measure case) decides to randomize. 

c. In decision problem of simple-vs.-simple hypothesis testing with 0-1 loss, the risk is the 

sum of type-I & type-II error probabilities, hence the rules 𝜹𝜶 corresponding to Neyman-

Pearson cover all the admissible rules (any other rule with significance 𝛼 has smaller 

power than 𝛿𝛼, so its risk is larger). 

d. In one-sided problem (e.g. 𝑯𝟏: 𝜽 > 𝜽𝟎) Neyman-Pearson can often be generalized to 

depend on 𝜃0 only (from the simple 𝐻0). 

e. In two-sided problems there is generally no uniformly-most-powerful test for a given 𝛼 

(since after determining 𝛼 there’s still a DoF for tradeoff between lower threshold 

(determining power for 𝜃 < 𝜃0) and upper threshold (determining power for 𝜃 > 𝜃0)). 

However, there’s often a uniformly-most-powerful unbiased test (the unbiasedness 

determines the tradeoff between lower & upper thresholds). 
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Asymptotic Theory and Optimization-Based Estimators 

M- and Z-estimators 
1. 𝑃𝑓 ≔ ∫ 𝑓𝑑𝑃 (deFinetti notation for probability measure P). 

2. Empirical distribution: 𝑃𝑛 ≔
1

𝑛
∑𝛿𝑋𝑖, empirical average: 𝑃𝑛𝑓 =

1

𝑛
∑𝑓(𝑋𝑖). 

3. Z-estimator:  {𝜽: 𝒁𝒏(𝜽) = 𝟎}  for 𝑍𝑛(𝜃) ≔ 𝑃𝑛𝑧𝜃  for some 𝑧𝜃: 𝑋 → 𝑅. 

4. M-estimator:  𝐚𝐫𝐠𝐦𝐚𝐱
𝜽

𝑴𝒏(𝜽)  for 𝑀𝑛(𝜃) ≔ 𝑃𝑛𝑚𝜃  for some 𝑚𝜃: 𝑋 → 𝑅. 

a. May be equivalent to Z-estimator of derivative of 𝑀𝑛 (if smooth with single extremum). 

5. Examples: 

a. MLE:   𝑚𝜃 ≔ log 𝑝𝜃. 

b. Least-squares:  𝑚𝜃(𝑥, 𝑦) ≔ −(𝑦 − 𝑓𝜃(𝑥))
2

 (under the model 𝐸[𝑌|𝑥] = 𝑓𝜃(𝑥)). 

c. Median:  𝑧𝜃 ≔ 𝜒𝑥>𝜃 − 1𝑥<𝜃  (generalization for quantiles is possible). 

d. Location estimation: mean (𝑧𝜃(𝑥) ≔ 𝑥 − 𝜃) and median (𝑠𝑖𝑔𝑛(𝑥 − 𝜃)) can be generalized 

to 𝑧𝜃(𝑥) = 𝑔(𝑥 − 𝜃), e.g. Huber’s estimator 𝑔𝑘(𝑢) ≔if (|𝑢| ≤ 𝑘) 𝑢 else const, which 

allows a controllable tradeoff between the smooth mean and the outlier-insensitive 

median. 

6. M- and Z-estimators do not require a model 𝒑𝜽(𝒙), which both saves efforts and prevents model-

biases. 

7. Consistency: 

a. By the Law of Large Numbers: 𝑴𝒏(𝜽) → 𝑴(𝜽) = 𝑃𝑚𝜃 in probability, pointwise in 𝜃. 

b. If the convergence is uniform in 𝜃 (e.g. if ∀𝑥: 𝑚𝜃(𝑥) is continuous in compact domain of 

𝜃), and if M has essentially unique maximum 𝜃∗, then a sequence with 𝑀𝑛(𝜃̂𝑛) ≥

𝑀𝑛(𝜃
∗) − 𝑜𝑃(1) satisfies 𝜽̂𝒏 → 𝜽∗ in probability. 

c. MLE & non-linear least squares can be proved to be consistent (under corresponding 

conditions) as private cases. 

8. Asymptotic normality: 

a. Z-estimator: √𝒏 (𝜽̂𝒏 − 𝜽∗) → 𝑵(0,
𝑃𝑧𝜃∗

2

𝑍̇(𝜃∗)2
) in distribution, if: 𝜃𝑛 → 𝜃∗; finite 2nd moment 

(𝑃𝑧𝜃∗
2 < ∞); and 𝑧𝜃(𝑥) satisfies Lipschitz condition (bounded differences) wrt 𝜃 and is 

differentiable at 𝜃∗. 

i. Note: these conditions are quite weak – MLE asymptotic normality traditionally 

assumes stronger conditions (two continuous derivatives rather than just 

Lipschitz condition) (how can it be if MLE is a private case?). 

b. M-estimators have similar asymptotic normality with slightly more complicated 

technicalities. 

c. Donsker classes: classes of functions {𝑧𝜃: 𝜃 ∈ Θ} or {𝑚𝜃: 𝜃 ∈ Θ} for which the asymptotic 

normality holds. 

i. Note: asymptotic normality essentially means “𝜃-uniform Central Limit 

Theorem”. Indeed, asymptotic normality can be derived from “uniform CLT” just 

as consistency was derived from “uniform LLN”, though the definition of uniform 

CLT is trickier. 
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Asymptotic normality and optimality 
1. Conventional regularity conditions include some smoothness of the model 𝑝𝜃(𝑥) (two continuous 

derivatives or something?). Such conditions are sometimes not satisfied or even hard to define (if 

Θ isn’t a standard space). 

2. Differentiability in Quadratic Mean (DQM): weak & robust definition for 𝜽-smoothness of √𝒑𝜽, 

based on integration (not derivation) on 2nd-order Taylor expansion, with 𝑙𝜃̇ as non-differentiable 

analog of the score 
𝑝̇𝜃

𝑝𝜃
=

𝜕

𝜕𝜃
log 𝑝𝜃:  ∃𝑙𝜃̇ :   ∫ [√𝑝𝜃+ℎ −√𝑝𝜃 −

1

2
𝑙𝜃̇√𝑝𝜃ℎ]

2
𝑑𝜇 = 𝑜(ℎ2)

𝑋
. 

a. Continuously-differentiable √𝑝𝜃  DQM, exponential family  DQM. 

3. DQM is sufficient for many properties, e.g. zero mean & finite variance of the score function (the 

latter is actually FI), and adjusted version of Cramer-Rao inequality. 

4. Local asymptotic normality: incomplete section, but probably means to say that CLT (mean ~ 

Normal around the expectation) is guaranteed under minimal conditions based on DQM. 

a. In particular, asymptotic normality is claimed to be a very general property of iid models 

– and not a property of estimators. 

5. Irregular example – Hodge’s estimator: 𝜃𝑛
𝐻 ≔ {

𝜃𝑛    |𝜃𝑛| ≥
1

𝑛1/4

0     |𝜃𝑛| <
1

𝑛1/4

. 

a. If 𝜃∗ ≠ 0 it’s asymptotically identical to 𝜃, and if 𝜃∗ = 0 then asymptotically 𝜃𝐻 ≡ 𝜃∗. 

b. Such “superefficiency” is generally possible only in zero-measure subsets of Θ. 

c. For any 𝜃∗ ≠ 0, 𝜃𝑛
𝐻 is indeed 𝑛-asymptotically identical to 𝜃𝑛, but for any 𝑛, 𝜃𝑛

𝐻 has certain 

𝜃∗ with larger errors, and in particular the max error max
θ∗∈Θ

𝑛 ⋅ 𝐸[𝑀𝑆𝐸] is unbounded (the 

MSE does not 𝜃∗-uniformly goes to 0), making Hodge’s estimator irregular. 

More Bayesian asymptotics 
1. Bernstein-von-Mises theorem guarantees consistency & asymptotic normality of posterior mean 

under certain conditions. These conditions may be violated in complex models (e.g. infinite-

dimensional parameters, as in Neyman-Scott example). Fortunately, more robust results are 

available in such cases. 

2. Consistent posterior Π𝑛 (𝑋 was omitted from the notation for convenience): Π𝑛(𝑈
𝐶) → 0 for any 

neighborhood 𝑈 of 𝜃∗  (all posterior mass is asymptotically concentrated around 𝜃∗). 

3. KL-condition:  ∀𝜖 > 0: Π({𝜃: 𝐾(𝑝𝜃∗ , 𝑝𝜃)}) > 0  (𝐾 = KL-divergence). 

a. I.e. positive prior probability to any “KL-neighborhood” of 𝜃∗). 

b. Since 𝜃∗ is unknown, that should hold for any 𝜃∗ ∈ Θ. 

4. Well-separated 𝜃∗:  ∀𝑈𝜃∗: inf
θ∉U

𝐾(𝑝𝜃∗ , 𝑝𝜃) > 0  (all 𝜃s out of neighborhood are KL-far). 

5. KL-condition + good-separation + some unclear uniform LLN: 

a.  consistent posterior. 

b.  if prior mean exists, then posterior mean satisfies 𝜽̃𝒏 → 𝜽∗ with probability 1. 

6. Likelihood-free Bayes posterior: consistency holds for any Π̃𝑛(𝐴) ∝ ∫ 𝑒−𝑛𝐿𝑛(𝜃)Π(𝑑𝜃)
𝐴

 (“pseudo-

posterior”), where 𝐿𝑛(𝜃) = 𝑃𝑛𝑘𝜃 is the empirical version of some loss function 𝐿(𝜃) = 𝑃𝑘𝜃 

which is minimized at 𝜃 = 𝜃∗. 

a. Standard Bayes posterior is a private case with log-likelihood loss 𝐿𝑛 = −
1

𝑛
log 𝐿(𝜃). 

https://en.wikipedia.org/wiki/Local_asymptotic_normality
https://en.wikipedia.org/wiki/Hodges%27_estimator


Ido Greenberg  2019 

25 
 

b. Preventing necessity of model, likelihood, and marginalization (i.e. if 𝜃 = (𝜓, 𝜆) with 

only 𝜓 of interest, there’s no need to estimate all 𝜃 only to estimate 𝜓). 

7. Example – Syring & Martin (2015): 

a. Frequentist hypothesis test for effectiveness of a medical treatment can only verify 

significance of effect (i.e. whether it exists) – not its magnitude or meaning. 

b. Minimal clinically important difference (MCID) is the minimal treatment outcome (𝑋 ∈

𝑋 ⊂ 𝑅) required to make an “important” difference 𝑌 ∈ {−1,1}, often measured through 

either survey among patients (anchor based) or expert panel (Delphi method). 

c. Desired MCID can be defined as 𝑡 for which 𝑋 > 𝑡 ⇔ 𝑃(𝑌 = 1) > 1/2. 

i. This corresponds to minimizing the loss 𝐿𝑛 = 𝑃(𝑌 ≠ 𝑠𝑖𝑔𝑛(𝑋 − 𝑡)). 

d. Standard Bayesian approach may use logistic model 𝑝𝛼,𝛽(𝑌 = 1|𝑋 = 𝑥) =
1

1+𝑒−(𝛼+𝛽𝑥)
 and 

calculate posterior for 𝑇 ≔ −𝛼/𝛽. This requires: 

i. Assuming the logistic model. 

ii. Choosing priors for 𝛼 and 𝛽. 

iii. Estimating both 𝛼 and 𝛽 just to derive 𝑇 = −𝛼/𝛽. 

e. Specifically, Syring & Martin simulated data from underlying model which is very different 

from the logistic model, yielding poor Logistic-model-based Bayesian posterior, hence 

demonstrating the sensitivity to the choice of model (section 3.1 in the paper cited 

above). 

f. They indeed used the loss function described above as an alternative to the negative log-

likelihood in Bayes posterior, and achieved better posterior of 𝑇. 

i. This requires only a prior for 𝑇. 

ii. It is worthy to note that from the first place 𝑇 was essentially defined by the loss 

function, which was justified, but gave clear advantage to the loss-based method. 

8. Essentially, the likelihood-free Bayes posterior just assigns probabilistic meaning to a variant of 

the loss function (𝒆−𝒏𝑳𝒏(𝜽)), and naturally guarantees consistency. 

a. Indeed, if you need to choose a parameter for decision-making, and you measure your 

success by a known loss function, and you don’t know very well how to model your data-

generating-mechanism, and you want to enjoy something-looking-like-distribution of the 

“correct” parameter – then likelihood-free Bayes posterior may be very convenient. 

 

https://www.researchgate.net/publication/270594292_Likelihood-free_Bayesian_inference_on_the_minimum_clinically_important_difference
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339159/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339159/
https://en.wikipedia.org/wiki/Minimal_important_difference

