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Contents Map 
Some of the contents of the course were already summarized in other frameworks and can be 

found in the corresponding summaries: 

• Introduction: standard partition to supervised (regression/classification) / unsupervised 

(clustering/coordinates transformation) (see Udacity AI course) 

• Linear Regression (see Udacity Supervised Learning course) 

• Logistic Regression (see Udacity Supervised Learning course) 

• Regularization (see Udacity AI course) 

• Neural Networks representation & learning (see Udacity Supervised Learning course) 

• Unsupervised Learning – K-means & PCA (see Udacity Unsupervised Learning course) 

 

Advice for Applying Machine Learning 
Learning improving can be done through getting more data samples, add/remove features, 

change the regularization 𝜆 and more. It is important to understand how each one of those hyper-

parameters affect the learning, and how to choose what to do accordingly. 

https://idogreenberg.neocities.org/#_Self-studied_Courses_Summaries
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• The performance of a learning model (“correctness of the hypothesis”) can be measured 

with relation to test data, in order to test the generalization capability. 

o Different types than total accuracy are necessary to measure performance wrt 

skewed classes (i.e. non-balanced classes, e.g. email classifications where 99% of 

the samples are non-spam). 

o For various error types and measures of performance, see MIT Probability & 

Statistics course and NLTK Book Summary). 

o In classification problems, the tradeoff between precision and recall (Pd) can be 

controlled through the decision threshold. The threshold may be chosen to 

maximize the F-score (harmonic mean of the two). 

 

• To examine the effect of hyper-parameters, the generalization can be evaluated through 

validation data which is split from the training data (test data must not be used until the 

final evaluation). 

• The error wrt the test/validation data should be calculated without the regularization 

term (which is used for training, not for evaluation). 

• Hyper-parameters to examine wrt validation data: 

o Various sets of features: either essentially-different features or polynomial 

features (which are just different powers of existing features) 

▪ In this case the training error is important as well: high training error 

means that the problem is not poor generalization (overfitting), but 

rather poor fit in the first place (underfitting) due to too simple model. 
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o Regularization (try variant 𝜆) 

▪ Note: strong regularization increases the bias (enforces simpler models) 

o Size of training data (try to train on parts of the data with different sizes) 

▪ Amount of data may be much more significant than algorithm’s quality. 

▪ Adding data reduces overfitting (more difficult to obtain dedicated fit). 

▪ Conditions on which more data is expected to help: 

• The features form sufficient information (“a human expert would 

be able to predict”). 

• The hypotheses space (model architecture) is complex enough to 

refine the model according to the additional data. 

▪ Learning curves: plot errors vs. different training sizes to diagnose high 

bias vs. high variance. 

  

o In NN: number of hidden layers and their sizes 

• Beginning simple, quick & dirty and then optimizing according to diagnosis (e.g. based on 

learning curves), is usually more efficient than trying to optimize in advance. 

• Visualization of 2D surfaces in MATLAB can be done using contour(), which plots the 

isolines of a matrix. 

Summary: 

• High bias = too simple model → underfitting → large training error 

• High variance = too complex model → overfitting → poor generalization → large 

validation error 
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• Generalization performance can be measured on validation set, using accuracy (for 

regression or balanced classification) or F-score (for skewed classification data). 

• Diagnosis can be done through learning curves. 

Hyper-Parameter Effect 

Data Number of data samples Improves generalization (conditioned on the 
features containing sufficient info & the 
architecture complex enough to exploit it) 

Features Polynomial/new features Increases variance 

Hypotheses 
space 

Model architecture (e.g. 
layers’ number & size in NN) 

Increases variance 

Regularization 𝜆 Increases bias 

 

Support Vector Machine 
• In logistic regression, a good classification would satisfy 𝑧 ≔ 𝜃𝑇𝑥 ≫ 0 if y=1 and 𝑧 ≪ 0 

otherwise, and the cost function is 𝐽(𝜃) = −𝑦𝑙𝑜𝑔 (
1

1+𝑒−𝑧) − (1 − 𝑦)𝑙𝑜𝑔 (1 −
1

1+𝑒−𝑧). 

• Another cost function is the Hinge Loss, which gives larger weight to the margin around 

the decision boundary: correctness doesn’t get extra credit for 𝑧 > 1, and the cost of 

mistakes increases linearly rather than faster. For example, for 𝑦 = 1 (i.e. desired 𝑧 →

∞), the cost is 𝑐𝑜𝑠𝑡1(𝑧) = max(0, 𝑘(1 − 𝑧)): 

 

• 𝑐𝑜𝑠𝑡0 = max(0, 𝑘(1 + 𝑧)) is symmetric wrt 0, and by convention the regularization is 

controlled by 𝐶 =
1

𝜆
. 

• In contrary to logistic regression, SVM’s output does not have probabilistic interpretation, 

but only the discrimination ℎ𝜃(𝑥) = 1 𝑖𝑓 𝜃𝑇𝑥 ≥ 0. 

o Though in multi-class 𝜃𝑇𝑥 itself is needed to choose the maximum among classes. 

• How does SVM maximize the margin rather than trying to achieve constant margin 1? 
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o [Udacity, Supervised Learning] claims that it turns out that for min|𝜃𝑇𝑥| = 1, the 

margin equals 
1

2||𝜃||
, thus the regularization probably guarantees the 

maximization of the margin (note that in SVM the regularization is always 
1

𝐶
> 0). 

Kernels 
• Kernels allow us to make complex, non-linear classifiers through generation of new 

features. While they are not exclusive to SVMs, the combination of the two turns out to 

be computationally efficient somehow. 

• A kernel 𝐾 measures similarity, and new features are formed based on similarity to 

certain landmarks {𝑙𝑖 ∈ 𝑅𝑛} (i.e. 𝑓𝑖 ≔ 𝐾(𝑥, 𝑙𝑖)). 

o The landmarks can be chosen, for example, to be all the training examples 

(seriously?). 

• For the SVM optimization not to diverge, the Kernel must satisfy Mencer’s Condition (was 

not explained). 

• Gaussian Kernel: 𝐾(𝑥, 𝑦) = 𝑒−||𝑥−𝑦||
2

/2𝜎2
) 

o 𝜎 determines the “smoothness” of the kernel, and how to choose it was not 

discussed. In general, smaller 𝜎 derives sharper changes around the landmarks, 

which may be kind of overfitting if the landmarks are the data examples. 

o The original features of the input data should be normalized before using 

Gaussian Kernel. 

• Linear kernel = no kernel → standard perceptron (=logistic regression). 

Practical Guide 
• MATLAB libraries for SVM: liblinear, libsvm. 

• Hyper-parameters to choose: 

o Inverse regularization C 

o The Kernel function and its parameters 

o Landmarks to apply the Kernel on 

• More complex models are recommended as 𝑚 is larger than 𝑛 (i.e. more samples than 

features, i.e. more constraints than degrees of freedom in the input). For example: 

o 𝑛 > 𝑚 – many features, just use logistic regression. 

o 𝑛 < 𝑚 – not many features, use SVM with a Gaussian Kernel. 

o 𝑛 ≪ 𝑚 – too few features to exploit the data – be creative and add features 

manually. 

o NN is claimed to work in all those cases, but be slower to train. 

See more about SVMs here, e.g.: 

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
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• In the linearly-separable case, Lagrange Multipliers method can be used for analytical 

optimization. 

 

Anomaly Detection 
• Learn the distribution of “normal” data, and for every new data sample 𝒙, determine 

the probability 𝒑(𝒙) to have such sample in the learnt distribution. Choose threshold 𝝐 

such that 𝒑(𝒙) < 𝝐 is declared anomaly. 

• Possible probability models: 

o A simple model for 𝑝(𝑥) can be Gaussians product: 𝑝(𝑥) = Π𝑝𝑁(𝑥𝑖; 𝜇𝑖 , 𝜎𝑖). 

Learning the best parameters {𝜇𝑖, 𝜎𝑖} from the training data is straight forward. 

o A bit more robust model is Multivariate Gaussian, whose covariance matrix may 

be non-diagonal, hence it can insert implicit linear base-transformation wrt mere 

Gaussians product. Its price is many more degrees of freedom, used to capture 

correlations between the features. 

• Useful (instead of supervised methods) when “positive” samples are easier to detect as 

“non-negative” rather than by common properties. For example, the following cases are 

appropriate: 

o Most of the data is “negative” (y=0). 

o The “positive” (y=1) data is very heterogenous. 

• Common use: Fraud detection. 

• Possible development method – given data of mostly non-anomalous samples: 

o Train (i.e. find p(x)) on training set of non-anomalous samples. 

o Validate and choose 𝜖 on validation set of mixed samples. 

o Test on mixed samples, using appropriate measure of performance (see NLTK 

Book summary). 
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• When the performance is not good enough, it usually means that the distribution of the 

selected features is similar for anomalous samples, hence the anomalous data should be 

explored for anomalous features, i.e. features that may have very unusual values in 

anomalies. 

 

Recommender Systems 
1. Used for recommendations of products (e.g. movies) to customers. 

2. Content-based recommendations (supervised): learn the preferences (𝜃) of each 

customer individually, based on movies he’s already rated (𝑦), and using input features 

(𝑥) such as genres. 

a. Requires features-set which is filled with values for every new sample. 

b. Requires training data from every user independently – unavailable for new ones. 

c. Requires the users to rate both positive and negative examples. 

3. Collaborative filtering: learn the features (𝑥) from the known users rates (𝑦) and their 

preferences (𝜃). The preferences can be asked from the users (e.g. “how much do you like 

action movies?”). 

4. More practical approach of collaborative filtering learns both the features (𝑥) and the 

preferences (𝜃) using the known rates (𝑦) and the (regularized) cost function: 

𝐽(𝑥, 𝜃) = ∑ (𝜃𝑢
𝑇𝑥𝑚 − 𝑦𝑢,𝑚)

2

𝑚,𝑢
𝑚 𝑖𝑠 𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑢

+ 𝜆 ∑ 𝑥𝑚,𝑓
2

𝑚,𝑓

+ 𝜆 ∑ 𝜃𝑢,𝑓
2

𝑢,𝑓

 

(where the indices represent movie, user and feature) 

5. Note: although the problem is introduced in terms of supervised learning (𝑥, 𝜃 and 𝑦), it 

differs from classical supervised problems: on one hand we don’t have well-defined 

features, and on the other hand we have many parallel models that can learn from each 

other simultaneously: 

a. There are 𝑛𝑢𝑠𝑒𝑟𝑠 separated models rather than 1 model – each model 𝜃𝑢(𝑓) has 

to predict its own ratings 𝑦𝑢(𝑚). 

b. Each model has different available training data (since each user rated different 

movies). Up to here it’s supervised-like – one can train each model separately. 

c. However – the data samples do not have natural input features 𝑥. The relevant 

information for the regression (the content of the movie) is practically unavailable 

for the training. Instead, one must exploit the partially-filled matrix-structure of 

the external ratings (𝑦𝑢,𝑚) to indirectly-deduce the information of the movies. 

6. Implementation note – default rates for new users: 

a. A new user 𝑢 has no rate 𝑦𝑢,𝑚 for any movie 𝑚. 

b. No errors cost + regularization → 𝜃𝑢 ≡ 0 is assigned → 𝑦𝑢 ≡ 0 is predicted. 

c. We would like the default preferences to correspond to the “standard” user 

rather than all-negative user. 

d. This is achieved by shifting the rates wrt the average rates instead of the arbitrary 

0 rate: 
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𝜇𝑚 =
∑ 𝑦𝑢,𝑚𝑚,𝑢

𝑚 𝑖𝑠 𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑢

∑ 1𝑚,𝑢
𝑚 𝑖𝑠 𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑢

 = average rate of movie 𝑚 

�̃�𝑢 = 𝑦𝑢 − 𝜇 =normalized rates of user 𝑢 

And adjusting the linear regression to 𝜃𝑢
𝑇𝑥𝑚 + 𝜇𝑚. 

7. Note: 

a. For recommendations of the type “people also liked…”, one can use the 

similarity between movies, derived from the learned features of the movies by 

𝑑(𝑚1, 𝑚2) = ||𝑥𝑚1
− 𝑥𝑚2

||. 

b. For recommendations of the type “people also saw…” – in which there’s no rating 

system but only [𝑦𝑢,𝑚 = whether 𝑢 visited the page of 𝑚] – one can use the same 

learning method. The data {𝑦𝑢,𝑚} is complete in this case (for every user and 

every movie, we already know whether 𝑢 visited the page of 𝑚 or not). Indeed, 

the learning is not intended to predict who visited which page, but only to find 

pages which are similar in terms of visitors. 

 

Large Scale Machine Learning 
1. ML is mainly useful for learning complex tasks (many features) form large dbs, and 

nowadays 100M samples dbs are already quite common. 

2. Stochastic Gradient Descent (SGD): repeating iterations of GD wrt the whole training data 

are expensive. Instead, one can apply each iteration on a single training sample, allowing 

many more iterations where each one is "noisier". The stochastic behavior of the 

iterations may cause inaccuracies, but also has the advantage of escaping local minima. 

a. Since there are many more iterations, and they're more unstable, it is reasonable 

to use smaller learning rate in SGD. In order to encourage convergence without 

being too sensitive to the random initial parameters, it is also possible to use 

slowly-decreasing learning rate. 

b. To measure the performance on the fly, it is possible to calculate the average cost 

frequently (say, every 1000 iterations or so). 

3. Mini-Batch Gradient Descent: same as SGD but with several (typically 10-100) samples 

per iteration. Empirically, it turns out to perform very well. 

4. Online learning: the SGD inherently permits us to add training data as the learning goes 

on, e.g. while keeping collecting data from users. 

5. A learning algorithm is Map-Reducible if it can be expressed as the sum of learning 

algorithms over subsets of the training data. This allows parallelization of the data and 

the computations. 

a. All the GD variants demonstrated in the course used a cost function which was a 

simple sum over data samples, and the gradient is linear, thus all those algorithms 

are map-reducible. 

i. Though the parallelization is not cost-effective for too small mini-batches. 
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Application Example: Photo OCR 
1. Object Character Recognition (OCR) problem: find text in photos and convert it to text. 

2. Machine Learning Pipeline: problem divided to a sequence of several modules, some of 

them implemented using ML. 

3. Ceiling Analysis: find the potential benefit from working on a certain module in the 

pipeline. 

a. The analysis is done by testing the change in the total performance when a 

specific module is manually set to have 100% accuracy (using the known ground-

truth output of the module for the available data). 

b. For analysis of a sequential pipeline, the modules are artificially “fixed” 

cumulatively rather than independently. That is, we test the pipeline as is, then 

fix module 1, then fix both modules 1 & 2, then fix modules 1…3, etc. This way we 

see how the improvement from the current performance up to 100% is divided 

between the modules. 

4. Photo OCR pipeline: 

a. Text detection: find rectangles containing text in the photo. 

b. Character segmentation: separate each rectangle of text to small rectangles of 

single character. 

c. Character recognition: identify the character correctly. 

5. Text detection: 

a. Choose rectangle size, and train to classify whether a rectangle contains some 

text or not. Below are some positive (y=1) examples. 

 

b. Scan a whole photo with rectangles and detect where there’s text. Use rectangles 

of few different sizes (stretch/compress them to correspond to the trained 

classifier input size), and scan with typical step size of several pixels. 

c. The typical scanning rectangles are small and local, whereas the typical text 

blocks are long and contain sequence of characters or even words. Thus, for every 

detected rectangle, we look for near detected rectangles and connect them along 

with the gap between them (if exists), generating long rectangular blocks of text. 

6. Character segmentation: 

a. Train to classify whether a rectangle of text (with typical length of 1-1.5 character) 

contains a transition between two characters or not. Below are some examples. 

   

b. Scan every text block with rectangles, and separate to different characters 

wherever a transition is detected. 

7. Character recognition: 
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a. Just train to classify images of written characters (demonstrated before in the 

course). 

b. When a complete word is formed, a dictionary may be used to correct wrong 

classifications of characters (the probabilities assignment from the classification 

should be kept for this reconsidering). 

Artificial Data 
1. Strong ML mechanisms typically have high variance and tons of data. 

2. The amount of training data can be artificially increased, generating synthetic data (or 

artificial data), as follows: 

a. If we can generate noiseless signal and combine it with typical noise, it allows 

us to generate many different samples from scratch, using various noisy 

backgrounds. For example, if we want to learn to classify characters, then we can 

download various available fonts and past each one on various visual 

backgrounds. 

b. Data samples can be manipulated in ways which we desire that won’t affect the 

classification. The manipulation should correspond to the expected typical 

distortions in the test data (adding random noise is usually not very helpful). For 

example, photos can be shifted, rotated, distorted, brightened etc. 

3. Note: high model’s variance is essential to exploit the expended data (bias/variance 

tradeoff can be diagnosed using the learning curves, see above). 

4. Naturally, the cost of collecting more data should be taken into account when deciding 

whether to go on synthesizing artificial data. It is claimed that often it would turn out to 

be quite easy to get 10 times more data than one currently has. 

a. Crowd source: services of hiring people through the web to label data, e.g. 

Amazon Mechanical Turk. 

 


