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Signals in Fourier Space and Effects of Discretization (Digitation) 

Fourier Transform (FT) 
Transforming a signal from time-space to frequency-space is achieved by continuous Fourier-Transform, 

i.e. by converting from delta-functions-basis to (the orthogonal) trigonometric-functions-basis. 

Note: time/frequency terminology is usually used, although the theory is more generic and can be applied, 

for example, to space/frequency as well (as in image processing). 

• Uncertainty principle of Heisenberg: short support in time (i.e. fast decay in time) ➔ long support 

in freq (i.e. slow decay in freq). 

Note: in reality, all sampled signals are finite in time, thus infinite in freq. 

• Smoothness: n bounded derivatives in time ➔ 1/𝜔𝑛+1-fast decay in freq (equivalently, jumps in 

time cause more significant high frequencies). 

• Convolution in time ➔ multiplication in freq. 

• Derivation in time ➔ ⋅ 𝑖𝜔 in freq. 

• Duality of the relationship between time and freq: the roles of time and freq in the properties 

above can be swapped. 

Discrete-Time Fourier Transform (DTFT) 
DTFT is a FT of [a signal sampled in discrete times]. 

Two ways to see discretization in time (i.e. sampling): 

1. Changing from integral (∫ ) to sum (∑) over discrete points in time-space – which deserves change 

of variable notation: x(t) → x(n). 

2. Multiplying the signal by “train” of delta functions (in time-space) before applying FT – which can 

keep us with homogeneous notation x(t). 

DTFT with sampling interval T causes duplication in frequency-space of the signal, in freq intervals of Ω =

2𝜋/𝑇. 

• Shannon frequency: If the frequency is known to be bounded by Ω = 2𝜋𝐹 (which is practically 

never true due to time being finite, see above), then sampling in 𝑇 < 1/(2𝐹) (or 𝒇 > 𝟐𝑭) ensures 

that the supports of the duplications are disjoint, i.e. the duplications do not overlap, thus by 

slicing the frequency range (−𝑓, 𝑓) the signal can be fully recovered from its (infinite) discrete 

sampling! 

o Note: it is completely dual to a signal within bounded time interval [-T,T] being fully 

represented by discrete Fourier series. 

• Aliasing: sampling in lower frequencies than Shannon frequency (𝑓 < 2𝐹) causes impersonation 

of the (impossible-to-measure) high frequencies to lower frequencies (𝑓 − 𝐹). For example, 

f=80Hz-sampling of F=50Hz-signal would create fake frequency peak in f-F=80-50=30Hz. 

• Short band in high frequency: for frequency band of width B around a known central freq F>>B, 

sampling of f>2B is enough. One can just eliminate the null frequencies f<F-B and recover the 

original signal. 

That’s fortunate, since using small antennas requires small transmitted wavelengths, which 

requires multiplication of the transmitted signals by a high frequency. 
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Discrete Fourier Transform (DFT) 
Approximating FT using digital computational tools requires discretization and bounding of both time and 

frequency. Applying all of these to FT results in the Discrete FT (DFT). 

So that’s what we do to a signal in order to digitally process it: 

 Effect in time-space Effect in frequency-space 

Discretization in 
time (DTFT) 

Sampling: multiplying by a train of 
deltas. 

Convoluting with train of deltas – i.e. infinite 
duplication of the signal. 

Bounding time Bounding: multiplying by a 
rectangle. 

Convoluting with Dirichlet Kernel (the DTFT 
of a rectangle, which is an infinite duplication 
of sync) – i.e. leakage of frequencies. 

Discretization in 
frequency 

Duplications in time are irrelevant 
since time is already bounded, 
thus no additional side-effects. 

Sampling: multiplying by a train of deltas. 

Bounding 
frequency 

Practically already caused by discretization in time (since the duplication in 
frequency enforces us to look only at bounded frequencies anyway), thus no 
additional side-effects. 

 

Notations: 

• Continuous time  𝑥(𝑡)  −∞ < 𝑡 < ∞ 

• Discrete time   𝑥(𝑛)  0 ≤ 𝑛 ≤ 𝑁 − 1 

• Continuous frequency  𝑋𝐹(𝜔)  −∞ < 𝜔 < ∞  also 𝐹[𝑥](𝜔) or 𝑥(𝜔) 

• Discrete frequency  𝑋𝐷(𝑘)  0 ≤ 𝑘 ≤ 𝑁 − 1 

Padding with zeros: adding zeros to a finite signal allows increase of N without modifying the information 

of the signal, which improves the frequency resolution of the DFT (see windowing below). 

 

Examples 

 Rectangle 
𝑟𝑒𝑐𝑡(𝑡) = 1 ⋅ (|𝑡| ≤ 1/2) 

Single frequency 
cos(𝜔0𝑡) 

FT 

Sync 
sin(𝜔/2)

𝜔/2
 

Two symmetric deltas 
1

2
𝛿(𝜔 − 𝜔0) +

1

2
𝛿(𝜔 + 𝜔0) 

DTFT 

Dirichlet-Kernel 
sin(𝜔𝑁/2)

sin(𝜔/2)
 

Infinite train of pairs of deltas 

∑ 𝛿(𝜔 − (2𝜋𝐾 ± 𝜔0))

𝐾∈𝑍

 

DFT 
Dirichlet-Kernel 

(already bounded in time…) 

Two leaked deltas 
𝛿(𝜔 ± 𝜔0) ∗ 𝐷𝑁(𝜔) 

Note: sampling in exactly 𝑇 = 2𝜋/𝜔0 
would prevent the leakage since the 

samples in frequency would fall exactly 
in the roots of 𝐷𝑁. 
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Fast Fourier Transform (FFT) 

An efficient algorithm for computation of DFT in 𝑶(𝑵𝒍𝒐𝒈𝑵) rather than 𝑶(𝑵𝟐). 

Computing the DFT with N samples naively requires 𝑁2 multiplications (since 𝑋𝐷(𝑘) is a sum of N 

multiplications of {𝑥(𝑛)} with {𝑒𝑖𝑘𝑛}). 

However, Fast Fourier Transform exploits the unique structure of the matrix that represents the 

computation – and in particular the fact that the twiddles {𝑒𝑖𝑘𝑛} can be represented as cumulative shifts 

by frequency – to apply divide-and-conquer approach that reduces the time-complexity of the 

computation to 𝑁𝑙𝑜𝑔𝑁 multiplications. 

 

Windowing 
As explained above, DFT implements bounding in time through multiplication by rectangle, AKA 

rectangular window, which causes leakage of frequencies. 

The leakage has two main properties: 

1. Frequency resolution, which is determined by the width of the main lobe, which can be reduced 

by adding more time-samples (i.e. increasing N). Frequency resolution is essential for separate 

detection of adjacent frequencies. 

2. Magnitude resolution, which is determined by the height of the side-lobes, and is an inherent 

property of the rectangular window. Magnitude resolution is essential for detection of weak (yet 

non-zero) frequencies. 

The implementation of DFT can be generalized to finite windows different from the rectangular one. In 

general, the various windows achieve various points in the tradeoff between frequency resolution (i.e. 

how large N is required for a certain width of the main lobe) and magnitude resolution (i.e. height of 

side lobes). 

Windows learned in the course: 

• Rectangular window. 

• Triangular window: convolution of two rectangles in time, hence multiplication of two Dirichlet-

Kernels in frequency ➔ squared magnitude resolution. 

• Hann window: 0.5*(cosine + rectangle). 

• Hamming window: similar to Hann, but with weights other than 0.5 & 0.5. 

• Kaiser window: parametric window with complicated expression that allows control of the 

frequency resolution vs. magnitude resolution tradeoff. 

Periodic (cyclic) convolution 
Cyclic convolution which is useful in certain contexts, and in particular allows efficient implementation of 

standard convolution in certain cases. Recommended to read about in external sources. 
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Laplace transform (Z-transform) 
• Z-transform is a generalization of Fourier transform for 𝒔 ∈ 𝑪 rather than 𝒊𝝎 ∈ 𝒊𝑹: 

𝐿{𝑓}(𝑠) ≔ ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

• Since we don’t have 𝑅𝑒(𝑠) = 𝑅𝑒(𝑖𝜔) = 0 anymore, and since for any 𝑅𝑒(𝑠) ≠ 0 the exponent 

diverges rapidly in either ∞ or −∞, then the transform is defined only over [𝟎, ∞). 

o In many practical cases 𝑓~𝑒−𝑎𝑡, and the transform converges only for 𝑅𝑒(𝑠) ∈ (−𝑎, ∞) 

(~∫ 𝑒−(𝑠−𝑎)𝑡). 

o Due to the limits of the integration in the transform, Laplace transform is useful for 

simplifying PDEs with one-sided bound condition, whereas Fourier is useful for 

simplifying PDEs over a whole line (e.g. the heat equation 𝑢𝑡 = 𝑢𝑥𝑥 over the line 𝑥 ∈ 𝑅). 

• Laplace transform has many properties similar to Fourier transform. For our purposes note that: 

o Time shifting:  𝐿{𝑓(𝑡 − 𝑎)𝑢(𝑡 − 𝑎)}(𝑠) = 𝑒−𝑎𝑠𝐿{𝑓}(𝑠) 

▪ (u is a step function that removes anything that was shifted into 𝑡 < 0) 

 

Filters 

Introduction 
A general filter can be defined as an iterative processing of some input signal 𝑥, with the form: 

𝑦𝑛 ≔ ∑ 𝑎𝑘𝑥𝑛−𝑘

𝑁1

𝑘=0

+ ∑ 𝑏𝑚𝑦𝑛−𝑚

𝑁2

𝑚=1

 

where ∑ 𝒂𝒌𝒙𝒏−𝒌
𝑵𝟏
𝒌=𝟎  is named Moving Average (MA) and ∑ 𝒃𝒎𝒚𝒏−𝒎

𝑵𝟐
𝒎=𝟏  is named Auto-Regression (AR), 

and together such a process is known as ARMA. 

The filter can also be written as: 

𝑦𝑛 − ∑ 𝑏𝑚𝑦𝑛−𝑚

𝑁2

𝑚=1

= ∑ 𝑎𝑘𝑥𝑛−𝑘

𝑁1

𝑘=0

 

Any such filter can be represented (using time-shifting of Laplace transform) in the Frequency Space as: 

(1 − ∑ 𝑏𝑚𝑒−𝑚𝑠

𝑁2

𝑚=1

) 𝑌 = (∑ 𝑎𝑘𝑒−𝑘𝑠

𝑁1

𝑘=0

) 𝑋 

Denoting 𝒛 ≔ 𝒆𝒔 (or 𝑧 = 𝑒𝑖𝜔 for real frequencies) and re-defining the {𝑏𝑚}, we have: 

𝑌 =
∑ 𝑎𝑘𝑧−𝑘𝑁1

𝑘=0

1 + ∑ 𝑏𝑚𝑧−𝑚𝑁2
𝑚=1

𝑋 

https://en.wikipedia.org/wiki/Laplace_transform
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i.e. the filter can be represented in the Frequency Space as 𝒀 = 𝑯𝑿 with 𝑯 =
∑ 𝒂𝒌𝒛−𝒌𝑵𝟏

𝒌=𝟎

𝟏+∑ 𝒃𝒎𝒛−𝒎𝑵𝟐
𝒎=𝟏

. 

• Usually we assume that the coefficients are real and that 𝑁1 ≤ 𝑁2. 

Impulse response 
A filter 𝐻 = ∑𝑎𝑘𝑧−𝑘 (i.e. 𝑦𝑛 = ∑𝑎𝑘𝑥𝑛−𝑘) is actually described in terms of its response to a single impulse 

𝑥𝑛 = 𝛿(𝑛), since we have 𝑦𝑛 = 𝑎𝑛. 

In particular: 

• If 𝑏𝑚 ≡ 0 we have 𝑯 = ∑ 𝒂𝒌𝒛−𝒌𝑵
𝟏 , or 𝒚𝒏 = ∑ 𝒂𝒌𝒙𝒏−𝒌

𝑵
𝒌=𝟎 . 

In such case the response to a single impulse would die out within 𝑁 time steps, from which comes 

the name Finite Impulse Response (FIR). 

• If there is some 𝑏𝑚 ≠ 0, e.g. 𝑦𝑛 = 𝑥𝑛 + 𝑏𝑦𝑛−1, then any single impulse 𝛿(𝑡 − 𝑡0) would decay 

exponentially (e.g. 𝑦(𝑡 − 𝑡0)~𝑒−𝑏(𝑡−𝑡0)), from which comes the name Infinite Impulse Response 

(IIR). 

▪ It can also be written as 𝒚𝒏 = 𝒙𝒏 + 𝒃𝒚𝒏−𝟏 = ∑ 𝒃𝒌𝒙𝒏−𝒌
∞
𝒌=𝟏 . 

➔ stable (finite-energy response to impulse) iff 𝑏 < 1. 

▪ Equivalently, in the Frequency Space: 𝑯 = ∑ 𝒃𝒌𝒛−𝒌∞
𝒌=𝟏 =

𝟏

𝟏−𝒃𝒛−𝟏. 

➔ 𝑏 < 1 iff the pole is within the unit circle. 

• It turns out that the last attribute can be generalized: a filter is stable iff 

all its poles are within the unit circle. 

FIR vs. IIR: 

• FIR advantages: 

o Linear phase (no frequencies dispersion) 

o Stability (due to finite response) 

o Relatively convenient for analytic research → advanced design methods are available 

• IIR advantages: 

o Typically smaller filter order (𝑚𝑎𝑥(𝑁1, 𝑁2)), which determines both its computational 

complexity and its time-delay. This is critical, for example, in control-systems. 

Finite Impulse Response (FIR) 
• We denote ℎ[𝑛] ≔ 𝑎𝑘 and receive 𝐻(𝑧 = 𝑒𝑖𝜔) = ∑ ℎ[𝑛]𝑒−𝑖𝜔𝑛𝑁

𝑛=0 . 

• If we enforce a symmetry/anti-symmetry axis for ℎ[𝑛] in 𝑁/2, then by taking 𝑒−𝑖𝜔𝑁/2 out of the 

sum 𝑯(𝝎), it can be represented by: 

o A real amplitude 𝑨(𝝎) consisting of: 

▪ A sum 𝑮(𝝎) of cosines with real coefficients 𝑔[𝑘]. 

▪ Some simple trigonometric function of the frequency 𝑭(𝝎) (see below). 

o A phase which is linear in 𝜔: 𝝓(𝝎) = 𝜙0 − 𝜏𝜔. 

• The linear phase −𝜔𝜏 assures that each frequency – besides being multiplied by its real amplitude 

𝐴(𝜔) – is delayed by the same time-difference 𝜏: 

o cos(𝜔(𝑡 − 𝜏)) = cos(𝜔𝑡 − 𝜔𝜏). 
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o The constraint of real amplitude and 2𝜋-periodicity yields 𝑒𝑖2𝜋𝜏 ∈ 𝑅, hence 2𝜏 ∈ 𝑍, from 

which are derived the possible variations of 𝑭(𝝎). 

o The constraint of real impulse-response derives ℎ[𝑛] ∈ 𝑅, hence 𝐻(𝜔) is skew-symmetric 

(apparently some Fourier property), from which is derived 𝑒𝑖2𝜙0 = 𝐴(𝜔)/𝐴(−𝜔): 

▪ 𝑒𝑖2𝜙0 → 𝝓𝟎 ∈ {𝟎, 𝝅/𝟐}. 

▪ |
𝐴(𝜔)

𝐴(−𝜔)
| = 1 → 𝐴(𝜔) = ±𝐴(𝜔), with which we don’t need the prior symmetry/ 

anti-symmetry assumption. 

• For more detailed explanations, see lecture 15. 

• In summary, the general form of a linear-phase FIR filter is determined by two factors: 

o The parity of the filter’s order (𝑁%2 ∈ {0,1}). 

o The constant phase (𝜙0 ∈ {0, 𝜋/2}). 

• In the context of discretely-sampling filter, we denote 𝜃 ≔ 𝑇𝜔 = 2𝜋𝑇𝑓. 

https://www.youtube.com/watch?v=cwz6Q4HuuJw&list=PLW3u28VuDAHK06Xr6cre0dwqUGJ5f4XbQ&index=14
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Band-Pass filter 

• Band-Pass filter (BP) keeps a band of frequencies while reducing other frequencies. 

o An ideal BP is the indicating function 𝜒[𝑓1,𝑓2]. 

• Most common cases are Low-Pass (LP, yielded by 𝑓1 = 0) and High-Pass (HP, yielded by 𝑓2 = 2𝜋). 

• FIR filter can only approximate the ideal BP filter. In practice, any such filter would consist of: 

o Pass-band:  band of frequencies for which |𝐻(𝑒𝑖𝜔) − 1| < 𝛿 

o Transition-band: band of frequencies for which 0 < 𝐻(𝑒𝑖𝜔) < 1 

o Stop-band:  band of frequencies for which |𝐻(𝑒𝑖𝜔)| < 𝛿 

• Note: 
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o The ideal filter is accepted for 𝛿 → 0 and no transition-band. 

o Shrinking the transition band requires high derivatives in frequency, which require many 

samples in time (i.e. large N). 

• Ideal filter requires non-continuous jump in frequency, and accordingly infinite impulse response. 

However, this response would have finite energy (from Parseval) and thus can be approximated 

by the finite Impulse-Response Truncation (IRT). 

o Note that since the frequencies are orthogonal, then truncating the ideal IIR filter in order 

N is actually the optimal FIR filter of order N in terms of 𝑳𝟐-norm. 

o However, due to Gibbs effect, the best L2-approximation of a step-function is not optimal 

in terms of || ⋅ ||∞. 

▪ A partial solution is gradual truncation of the frequencies using windowing. 

• Remez method (Equi-ripple filters): Optimizing a BP filter in terms of || ⋅ ||∞ (i.e. minimizing the 

maximal error out of the transition-band) is achieved using Chebyshev Polynomials, which 

minimize the maximal error using polynomials of N cosines which reach that maximal error exactly 

N+1 times (or so). 

o The polynomials are typically approximated using numerical iterative methods with 

random initial guess. 

Infinite Impulse Response (IIR) 
• In opposed to FIR filters (this difference was not explicitly explained in the course), IIR filters are 

difficult to design directly in the digital space. Thus, digital IIR filters are usually designed through 

conceptual discretization of analog filters: 

o Requirements are expressed in terms of digital domain (since the filter applies in this 

domain). 

o The requirements are converted to the analog domain. 

o A theoretical analog filter is designed according to the requirements. 

o The analog filter is transformed into a digital filter. 

• Analog filter is defined by its continuous response to impulse, or equivalently by its effect on 

every 𝑠 ∈ 𝐶. 

• Popular classes of analog filters: 

o Butterworth: basic analog filter. 

o Chebyshev: filter with ripples (i.e. non-monotonic behavior) in either the pass-band or 

the stop-band, and smooth, monotonic flow in the other band. 

o Elliptical: filter with ripples in both pass & stop bands, but with narrower transition band. 

o Bessel: IIR filter whose phase is intended to be as close to linear as possible. 

o Kalman: out of the scope of the course. 

• Transformations from analog to digital filters: 

o Impulse-invariance: ℎ[𝑛] ≔ 𝑇ℎ(𝑛𝑇) 

▪ Sampling the impulse-response ℎ is intended to keep the impulse-response. 

▪ It can be shown that it’s vanishes in 𝑧 = 𝑒𝑖𝜋, hence cannot implement high-pass. 

o Step-invariance: keep the response to step (which is important in many applications) by 

sampling it instead of sampling impulse-response: ℎ[𝑛] ≔ 𝐿−1 {
𝐻(𝑠)

𝑠
} (𝑛𝑇) 
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o Bilinear transform (most important in the course): 𝑠 ←
2

𝑇

𝑧−1

𝑧+1
  (replacement of 𝑠 in the 

representation of the continuous 𝐻) 

▪ The first two transformations apply sampling of the response of the filter to some 

input signal, which is essentially approximation of the convolution integral using 

the standard rectangles of Riemann. The Bilinear transform, however, can be 

represented as Trapezoidal approximation of the convolution integral. 

▪ Since the Bilinear transform does not involve integral transformations (or 

equivalently, does not apply sampling in time), it does not suffer from Aliasing. 

▪ The invert transformation is 𝑧 =
1+𝑠𝑇/2

1−𝑠𝑇/2
, from which one can show that [|𝑧| < 1 

iff 𝑅𝑒(𝑠) < 0] and [|𝑧| = 1 iff 𝑅𝑒(𝑠) = 0], i.e. the complete frequency line 

𝑹𝒆(𝒔) = 𝟎 is mapped to the unit circle |𝒛| = 𝟏. In particular, it can be shown 

that 𝜽 ≔ 𝒂𝒓𝒈(𝒛) = 𝟐 𝐭𝐚𝐧−𝟏 𝝎𝑻

𝟐
. Hence, the bilinear transform maps all the 

frequencies 𝝎 ∈ 𝑹 into 𝜽 ∈ [−𝝅, 𝝅]. 

▪ Note that for 𝜔 ≪ 1/𝑇 we have 𝜃 ≈ 𝜔𝑇, but for larger 𝜔’s we get significant 

frequency distortion. Thus, the conversion of the requirements from digital to 

analog domain should take it into account in advance (pre-wrap): each 

requirement on a discrete frequency 𝜃 is rephrased for 𝜔 =
2

𝑇
tan

𝜃

2
 (rather than 

𝜔 = 𝜃/𝑇). 

 

Multi-rate digital signal processing 

• Change of sampling frequency from 𝒇𝟏 to 𝒇𝟐 can be implemented by approximating 
𝑓2

𝑓1
≈ 𝑞 =

𝑚/𝑛 ∈ 𝑄, then upsampling and downsampling: 𝑓1 → 𝑚𝑓1 →
𝑚𝑓1

𝑛
≈ 𝑓2. 

• Upsampling (interpolation) by integer factor: 

o Implementation: 

▪ Upsampling: add artificial zero samples (e.g. x1, 0, 0, x2, 0, 0, x3...). 

▪ Reconstruction: apply digital low pass filter. 

• Since LPF is essentially a discrete convolution with sync, it turns out that 

the LPF keeps the original non-zero samples and reconstructs the missing 

signal in the zero samples – just as in sampling & reconstruction. 

• Since ideal LPF requires infinite convolution and hence is not causal, in 

practice an approximating FIR or IIR filter is used. 

o The figure below demonstrates an original signal, the artificial upsampling and the 

reconstructed upsampled signal. 
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o Note: upsampler is linear, but not time-homogeneous. 

o Note: the upsampling naturally doesn’t generate new information, but rather 

reconstructs the “simplest” interpolation (in the notion of zeroized high frequencies). 

• Downsampling (decimation) by integer factor: 

o Downsampling decreases the Nyquist frequency of the digital system, thus an input signal 

spectrum should correspond in advance to the Nyquist frequency of the downsampled 

system. 

o Aliasing is prevented by LPF that filters out the high frequencies in advance (and naturally 

loses any information of frequencies higher than the new Nyquist). 

o Implementation: 

▪ Aliasing prevention: apply low pass filter. 

▪ Compression: delete the unwanted samples (e.g. keep only x1, x4, x7, x10…). 

• Both upsampling and downsampling involve computations in dimension higher than the 

“essential dimension” of the information carried by the output signal. Accordingly, it can be 

shown that many computations can be saved by appropriate design, as in the following examples: 

o Simple careful design of the order of the filter’s components can directly spare many 

degenerated computations (e.g. multiplications by zero). 

o Multi-stage: decomposition of the sampling-rate conversion into two sequential 

processes (e.g. X50 X2 instead of X100) turns out to allow significant reduction of the 

computational complexity. 

▪ Furthermore, concatenating interpolation-and-then-decimation before a 

narrow-band (thus computationally-complex) filter can significantly reduce the 

complexity of the filter on account of extended transition band. 

o Poly-phase filters can implement efficient sampling-rate conversion through 

transforming N various frequencies into M frequencies with N/M various phases, and 

then applying the computation in the low-frequency (M) digital space. 

• Oversampling: it is possible to use in advance higher sampling frequencies  than required. 

o In IIR filters, it allows increase of the order of the filter and reduction of the noise without 

increasing the time delay. 

o It also allows dynamic choice of the sampling frequency without losing information. 

▪ For example, video sampling of 150hz allows watching both American movies 

with frame rate of 30hz, and European movies with 25hz.  
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List of advanced topics 
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