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Graph Theory: Summary of Selected Topics 

This is a succinct summary of selected graph-related topics, intended to map the main materials in the 

field and shortly explain what they are. 

While the chapters are mostly independent (in particular the basic graph algorithms chapter can be easily 

read first), former familiarity with the very basic graph definitions is recommended for any of the chapters. 

The various references used for this summary are stated in the beginning of each chapter. 

Summarized by Ido Greenberg, 2019. 
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Applications 
Some more and less intuitive problems and fields that can be researched using graph representation: 

• Traffic & navigation 

• Telecommunication 

• Social networks 

• Deceases spreading 

• Pairs-match (e.g. matchmaking) 

• Strategic and military alliances 

• Water pipes systems 

• Clustering of elements by similarity or closeness 

• Estimation of viewing directions {𝑅𝑖}𝑖 of different cameras watching the same object, through a 

known subset of the relative directions {𝑅𝑖_𝑣𝑠_𝑅𝑗}𝑖𝑗 
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Graph Theory 
Main source: Arazim project notes of Graph Theory course in TAU. 

Basic definitions 
• Graph: 𝐺 = (𝑉, 𝐸) (nodes/vertices {𝑣} & edges {(𝑣, 𝑢)});  𝑛 ≔ |𝑉|,   𝑚 ≔ |𝐸|. 

o Unless otherwise specified, all graphs in this summary are assumed to be simple (neither 

self-edges nor double edges) and undirected. 

• Complete graph: 𝐸 = {(𝑢, 𝑣)|𝑢 ≠ 𝑣 ∈ 𝑉} = all possible edges. 

• Adjacency matrix: 𝐴𝑖𝑗 ≔ 1 if (𝑖, 𝑗) ∈ 𝐸 else 0. 

• Line graph (edge-to-vertex dual, conjugate, edge graph) 𝐿(𝐺): graph of edges of 𝐺 as nodes. 

• Clique: a set of nodes which is fully connected (i.e. with edges between all nodes). 

• Independent set: a set of nodes with no edges between them. 

• Walk (repetitions allowed), trail (no edge repetitions), path (no edge/node repetitions). 

• Circuit (no edges repetitions), cycle (no edge/node repetitions). 

• Connected graph: there’s a path between any two nodes. 

• Degree of node (𝑑𝑣): number of neighbors (or edges). Min & max degrees in 𝐺 are denoted 𝛿, Δ. 

• Regular graph: all nodes have the same degree. 

• Bipartite graph: 𝐸 ⊆ 𝐴 × 𝐵 where 𝑉 = 𝐴⨃𝐵. 

Trees 
• Tree – equivalent definitions: 

o Connected graph 𝐺 = (𝑉, 𝐸) with no cycles.   (not connected → forest) 

o Connected 𝐺 with |𝑉| − 1 edges. 

o 𝐺 with |𝑉| − 1 edges and no cycles. 

o 𝐺 with exactly 1 path between each 2 nodes. 

• Cayley’s formula: the number of different possible trees on 𝑛 labeled nodes (or equivalently, 

number of spanning trees in a complete graph) is 𝑛𝑛−2. That’s a private case of: 

• Kirchhoff's matrix tree theorem: the number of spanning trees in a connected graph is 
𝟏

𝒏
𝚷𝒊=𝟏

𝒏−𝟏𝝀𝒊, 

where 𝜆𝑖 are the sorted eigenvalues of the Laplacian matrix 𝐿𝑖𝑖 ≔ 𝑑𝑒𝑔𝑖, 𝐿𝑖𝑗 ≔ −𝜒(𝑖,𝑗)∈𝐸. 

  
Trees 

Connectivity 
• Cut: all edges between 𝐴 and 𝐵 for 𝑉 = 𝐴⨃𝐵. 

• Cut vertex:  𝑣 ∈ 𝑉 such that (𝑉, 𝐸) is connected but (𝑉\{𝑣}, 𝐸) is not. 

• Bridge:   𝑒 ∈ 𝐸 such that (𝑉, 𝐸) is connected but (𝑉, 𝐸\{𝑒}) is not. 

o E.g. any edge in a tree is a bridge. 

• Vertex connectivity (𝜅(𝐺)): minimum number of nodes whose deletion makes 𝐺 disconnected. 

o k-connected graph: 𝜅(𝐺) ≥ 𝑘. 

• Edges connectivity (𝜅′(𝐺)): minimum number of edges whose deletion makes 𝐺 disconnected. 

o 𝜿(𝑮) ≤ 𝜿′(𝑮) ≤ 𝜹(𝑮). 

http://www.arazim-project.com/sites/default/files/public/lesson_sums/graph2013a_general_0.pdf
https://www30.tau.ac.il/yedion/syllabus.asp?course=03663267


Ido Greenberg  2019 

4 
 

• Block: 2-connected subgraph which is maximal wrt containment (i.e. doesn’t have cut-nodes). 

o Intersection of 2 blocks cannot contain more than 1 node. 

Euler and Hamilton cycles 
• Euler circuit (originated in Konigsberg’s bridges): pass through all edges exactly once. 

o Exists in a connected graph iff all degrees are even. 

• Hamilton path/cycle: pass through all nodes exactly once. 

o Hamilton cycle in the line-graph is (up to pathological examples) Euler circuit in the graph. 

o Decide its existence in a graph is NP-complete. 

o Necessary condition: ∀𝜙 ≠ 𝑆 ⊂ 𝑉: 𝐺(𝑉\𝑆)’s connectivity components number ≤ |𝑆|. 

o Sufficient condition (Dirac, 1952): 𝑛 ≥ 3 and ∀𝑣 ∈ 𝑉: 𝑑𝑣 ≥ 𝑛/2. 

o Sufficient condition (Ore, 1960): 𝑛 ≥ 3 and ∀(𝑖, 𝑗) ∉ 𝐸: 𝑑𝑖 + 𝑑𝑗 ≥ 𝑛. 

 
Hamilton cycle 

Matchings and covers 
• Matching (independent edge set): 𝑀 ⊂ 𝐸 with no shared nodes (i.e. each node appears at most 

once in 𝑀). 

o Matching number: 𝜇(𝐺) ≔ max
M is a matching

|𝑀|. 

o 𝑀 saturates 𝐴 ⊂ 𝑉 if each 𝑣 ∈ 𝐴 has edge in 𝑀. 

o Perfect matching: 𝑀 saturates all the nodes (i.e. |𝑀| = |𝑉|/2). 

▪ Near-perfect: exactly 1 node is not saturated. 

• Vertex cover: 𝑇 ⊂ 𝑉 that covers all edges. 

o 𝑻 is a cover ⇔ 𝑽\𝑻 is an independent set. 

o Cover number: 𝜏(𝐺) ≔ min
T is a cover

|𝑇|. 

▪ ∀𝐺: 𝝁 ≤ 𝝉 ≤ 𝟐𝝁. 

• In bipartite graphs: 

o 𝝁(𝑮) = 𝝉(𝑮). 

o Hall’s theorem: a bipartite graph (𝐴⨃𝐵, 𝐸) has 𝐴-saturating matching ⇔ any 𝑋 ⊂ 𝐴 has 

more neighbors than elements. 

o Any bipartite regular graph has a perfect matching. 

 
Maximum matching in a bipartite graph 
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Coloring 

Vertex coloring 

• 𝒌-coloring of a graph: assignment of colors 𝑓: 𝑉 → {1 … 𝑘},  s.t. ∀(𝑣, 𝑢) ∈ 𝐸: 𝑓(𝑣) ≠ 𝑓(𝑢). 

o Equivalently, 𝑘-coloring is a partition of 𝑉 to 𝑘 independent sets. 

• Chromatic number (𝜒(𝐺)): min 𝑘 s.t. 𝐺 is 𝑘-colorable. 

o 𝜒(𝐺) ≥
|𝑉|

|max independent set|
   (since coloring is partition to ind. sets) 

o 𝑉 = 𝐴⨃𝐵  ⇒   𝜒(𝐺) ≤ 𝜒(𝐺(𝐴)) + 𝜒(𝐺(𝐵)) (proved by union of disjoint colorings) 

o 𝜒(𝐺) + 𝜒(𝐺̅) ≤ |𝑉| + 1   (where 𝐺̅ – the complement graph – includes all edges but 𝐸). 

• Degeneracy of graph: min degree in the [subgraph that maximizes it] (𝑑𝑒𝑔𝑒𝑛(𝐺) ≔ max
G̃⊂G

𝛿(𝐺̃)). 

o 𝛿(𝐺) ≤ 𝑑𝑒𝑔𝑒𝑛(𝐺) ≤ Δ(𝐺)   (≤ by 𝐺̃ ≔ 𝐺, ≥ trivially) 

o 𝝌(𝑮) ≤ 𝟏 + 𝒅𝒆𝒈𝒆𝒏(𝑮) ≤ 1 + Δ(𝐺) 

o Brooks theorem: actually 𝝌(𝑮) ≤ 𝚫(𝑮) – unless 𝐺 is complete or an odd cycle. 

• 𝒌-critical graph: smallest that’s still 𝑘-colorable (i.e. 𝜒(𝐺) = 𝑘  ∧   ∀𝐺̃ ⊊ 𝐺: 𝜒(𝐺̃) < 𝑘). 

o 𝐺 is 𝑘-critical ⇒ 𝛿(𝐺) ≥ 𝑘 − 1 (otherwise remove 𝑣 with 𝑑𝑣 ≤ 𝑘 − 2, do (k-1)-coloring, 

and return 𝑣 with a color different from its (k-2) neighbors ⇒ 𝐺 is (k-1)-colorable). 

▪ In particular, |𝐸| ≥
𝑘−1

2
|𝑉|. 

o 𝐺 is 𝑘-critical ⇒ 𝜅′(𝐺) ≥ 𝑘 − 1. 

• Erdos theorem: ∀𝑘, 𝑙 ∈ 𝑁, ∃𝐺:  [all cycles of 𝐺 are longer than 𝑙] ∧ [𝜒(𝐺) ≥ 𝑘]. 

o I.e. lack of “local” (short) cycles doesn’t guarantee that we can do with just few colors. 

 
Vertex 3-coloring 

Edges coloring 

• Edge 𝒌-coloring: assignment of colors 𝑓: 𝐸 → {1 … 𝑘},   s.t. ∀(𝑒, 𝑒̃) ∈ 𝐸: 𝑓(𝑒) ≠ 𝑓(𝑒̃). 

• Chromatic index (𝜒′(𝐺)): min 𝑘 s.t. 𝐺 is 𝑘-edge-colorable. 

• 𝜒′(𝐺) = 𝜒(𝐿(𝐺))  (from definition of the Line-graph) 

• 𝜒′(𝐺) ≥ Δ(𝐺)   (the edges of 𝑣 with 𝑑𝑣 = Δ must have Δ different colors) 

• Vizing theorem:  𝚫(𝑮) ≤ 𝝌′(𝑮) ≤ 𝚫(𝑮) + 𝟏. 

o 𝐺 is bipartite ⇒ 𝜒′(𝐺) = Δ(𝐺). 

• Ramzi theorem: ∀𝑘, 𝑙 ∈ 𝑁, ∃𝑟𝑘,𝑙 , ∀𝐺: |𝑽| ≥ 𝒓𝒌,𝒍 ⇒ ∃either a 𝒌-size clique or a 𝒍-size ind. set. 

o Equivalently, any edges-assignment of 2 colors in a large (𝑛 ≥ 𝑟𝑘,𝑙) complete graph, forms 

a clique of either of the colors. 

o The minimal 𝑟𝑘,𝑙  is Ramzi number of 𝑘 & 𝑙, and satisfies 𝑟𝑘,𝑙 ≤ (
𝑘 + 𝑙 − 2

𝑘 − 1
). 

 
Edge 3-coloring 
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Extremal graph theory 
• Extremal graph theory deals with finding the maximal or minimal graph wrt certain constraints. 

One of the foundations of the theory is Turan’s theorem (1941), which claims how many edges a 

graph can have without containing a clique of certain size. 

• Complete multipartite graph: 𝑉 = ⨃ 𝐴𝑖
𝑚
𝑖=1  and 𝐸 = {(𝑎𝑖, 𝑎𝑗) | 𝑎𝑖 ∈ 𝐴𝑖 , 𝑎𝑗 ∈ 𝐴𝑗, 𝑖 ≠ 𝑗}. 

• Turan graph (𝑇𝑛,𝑚): balanced complete multipartite graph (i.e. |𝐴𝑖| ∈ {⌊
𝑛

𝑚
⌋ , ⌈

𝑛

𝑚
⌉}). 

o Note: largest clique in Turan graph is of size 𝑚. 

• Turan’s theorem (1941): Turan graph has the maximum number of edges among [𝑛-nodes graph 

with no (𝑚 + 1)-clique]. 

 
Turan graph 

Planar graphs 
• Plane graph: embedding (i.e. drawing) of a graph in a plane. 

o Face: connectivity component of the plane after removing the plane graph. 

o Dual graph (𝐺∗): graph of faces (faces are connected iff they share an edge in the plane 

graph). 

• Planar graph: can be embedded in a plane with no intersection of edges (up to in the vertices). 

o Planar ⇔ can be embedded in a sphere. 

o Euler’s formula: 𝝓 ≔ |{𝐟𝐚𝐜𝐞𝐬}| = |𝑬| − |𝑽| + 𝟐. (also 𝑒𝑖𝜋 + 1 = 0) 

• A clique of 5 nodes can be embedded in a torus with no intersections. 

 
A dual graph (in red) 
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Basic Graph Algorithms 
Main source: Prof. Reuven Bar-Yehuda lectures (Technion, 2013) and lecture notes (Technion, 2015). 

Search 
Most basic graph search algorithms (AKA traversal, exploration) try to find a path (often the shortest one) 

from 𝑠 to 𝑡 by beginning from 𝑠 and explore neighbor-nodes. This process goes on recursively, where at 

each point there’re 3 groups of nodes: those fully scanned, those not reached yet, and those reached but 

not fully scanned yet (the frontier of the search). The algorithms differ in the order of the exploration, 

which is determined by the sorting of the frontier. 

Algorithm Weights Frontier Running time 

BFS (breadth-first) Ignoring 
weights 

Queue 
𝑂(|𝑉| + |𝐸|) 

DFS (depth-first) Stack 

Dijkstra (close-first) 

𝑤 ∈ [0, ∞) 

Heap: distance from 𝑠 

𝑂(|𝑉| log|𝑉| + |𝐸|) 
A* (close-first) 

Heap: distance from 𝑠 + 
heuristic distance to 𝑡 

Bellman-Ford 𝑤 ∈ 𝑅 
All reached nodes (nodes can 
never be removed from frontier 
due to possibly negative edges) 

𝑂(|𝑉| ⋅ |𝐸|) 

 

• DFS: the stack frontier means that the next node to explore is a neighbor of the one that was just 

reached, which intuitively keeps the search “continuous” (no immediate jumps to other nodes in 

the frontier), which is useful for: 

o Mapping connectivity components and separating nodes. 

o Physical search (like an actual maze). 

o Topological sort in directed acyclic graphs (DAG): 𝑎 < 𝑏 iff there’s a path 𝑎 → 𝑏. 

• Floyd-Warshall algorithm: use dynamic programming to find shortest paths between all pairs of 

nodes (each step find all shortest paths of length ≤ 𝑛 based on all those of length ≤ 𝑛 − 1). 

o Can handle negative weights (but not negative cycles). 

o Running time: 𝑂(|𝑉|3). 

Minimum spanning tree (MST) 
• Tree: a connected graph with no cycles. 

o Spanning tree of a graph (𝑉, 𝐸): a tree (𝑉, 𝐸′) with 𝐸′ ⊂ 𝐸. 

▪ Minimum spanning tree: spanning tree with minimal sum of weights. 

• Fundamental lemma: if 𝑉 = 𝑋⨃𝑌, then there exists MST with the shortest edge from 𝑋 to 𝑌. 

• Prim’s algorithm: iteratively go over all edges from 𝑋 to 𝑉\𝑋, choose the shortest (𝑥, 𝑦), and add 

𝑦 to 𝑋. 

o Running time: 𝑂(|𝑉| ⋅ |𝐸|); there’s a variant with 𝑂(|𝑉|2 + |𝐸|)). 

• Kruskal algorithm: iteratively add to 𝐸′ the shortest edge (𝑥, 𝑦) ∈ 𝐸\𝐸′, and shrink 𝑥, 𝑦 into a 

single node. 

o Running time: 𝑂(|𝐸| log|𝐸|) if the edges are sorted in advance. 

  

https://www.youtube.com/playlist?feature=edit_ok&list=PLW3u28VuDAHLn7b-CDZv3ybH3qD4WBGcc
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Flow and matching 
• Max flow problem: find the strongest flow from 𝑠 to 𝑡 within a graph, subject to edges capacities. 

• Min cut: find the partition 𝑉 = 𝑋⨃𝑌 for which the edges {(𝑥, 𝑦)} have minimal sum of capacities. 

• Equivalence: [max flow from 𝒔 to 𝒕] ≡ [min cut subject to 𝒔 ∈ 𝑿 and 𝒕 ∈ 𝒀]. 

• Ford-Fulkerson algorithm: while there’s a path 𝑠 → 𝑡, add its maximal flow and update capacities. 

o In the end, the subgraph which is still connected to 𝑠 defines a min cut. 

o Note: the greediness of the algorithm is not a limitation, since each added path can be 

practically canceled later by paths which use the same edges in the opposite direction. 

o Note: time complexity strongly depends on implementation. 

▪ Edmonds-Karp (𝑶(|𝑽|𝟑 ⋅ |𝑬|)): choose next path using BFS. 

▪ Dinic (𝑶(|𝑽| 𝐥𝐨𝐠|𝑽| ⋅ |𝑬|)): don’t update capacities every single added path. 

• Generalizations: 

o Flow with lower bound (edges have both min & max flow constraints): 

▪ Simply generalizable given a valid flow (where all edges constraints are satisfies). 

▪ Initial valid flow can be found using tricky construction of fictive new nodes along 

with shift of the valid-flow-interval of the edges. 

o Minimum flow: just look for max inverted flow 𝑡 → 𝑠. 

o Multiple sources {𝑠𝑖} and targets {𝑡𝑖}: add fictive 𝑠0 & 𝑡0 with 𝑐(𝑒𝑠0𝑠𝑖
), 𝑐(𝑒𝑡𝑖𝑡0

) ≡ ∞. 

• Applications: 

o Maximum matching problem: given a bipartite graph (i.e. 𝐸 ⊆ 𝑋 × 𝑌 for 𝑉 = 𝑋⨃𝑌) of 

possible matches (possibly weighted) between 𝑋 and 𝑌, find a maximum match. 

▪ Can be solved through max flow using the construction 𝑠 → 𝑋 → 𝑌 → 𝑡. 

▪ Hall’s condition: an equivalent condition for existence of a full match (i.e. match 

that fully covers either 𝑋 or 𝑌). 

o Max independent set: find a maximal set 𝑈 ⊆ 𝑉 such that there are no edges in 𝑈. 

o Min vertex cover: find a minimal set 𝑈̃ ⊆ 𝑉 such that every edge has a node in 𝑈̃. 

▪ Equivalence: 𝑈 is a maximal independent set iff 𝑈𝐶  is a minimal vertex cover. 

▪ For general graphs this problem is NP-hard. 

▪ For bipartite graphs it’s solvable through the resulted connectivity components 

of a max-flow algorithm, using the same construction as in the matching problem. 

 
Matching using maximum flow in bipartite graph  
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Spectral Graph Theory 
Main sources: Stanford’s presentation, Yale’s presentation and course, MIT notes and Chicago’s notes. 

Basic definitions and properties 
• Spectral graph theory: use algebraic properties of matrix representation to research graphs. 

• Matrix representation of an undirected graph (directed analogs are available): 

o Adjacency matrix: 𝐴𝑖𝑗 ≔ 𝑤𝑖𝑗 (= 𝜒(𝑖,𝑗)∈𝐸 in the case of unweighted graph) 

▪ Eigenvalues of the matrix are associated with combinatorial properties. 

o Laplacian matrix: 𝐿 ≔ 𝐷 − 𝐴 (𝐿𝑖𝑖 = 𝑑𝑖, 𝐿𝑖𝑗 = 𝐿𝑗𝑖 = −𝜒(𝑖,𝑗)∈𝐸) 

▪ Terminology comes from being the discrete Laplacian operator – the 2nd (discrete) 

derivative of any function of the nodes. 

▪ Symmetric normalized Laplacian: 𝐿𝑠𝑦𝑚 ≔ 𝐷−1/2𝐿𝐷−1/2 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2. 

• Adjacency matrix – basic properties (assuming unweighted graph): 

o ∑ 𝝀𝒌
𝒍

𝒌 = number of closed walks of length 𝒍 (in particular ∑𝜆𝑘 = 0, ∑𝜆𝑘
2 = 2|𝐸|). 

▪ Similarly, the number of walks of length 𝑙 between 𝑣 and 𝑢 can be calculated 

through the eigenvalues & eigenvectors of 𝐴. 

o The largest eigenvalue 𝝀𝟏 corresponds to a (weakly-)constant-sign eigenvector. 

▪ It is also largest in absolute value (equivalently |𝜆𝑛| ≤ 𝜆1 for decreasing eigs). 

▪ 𝜆𝑛 = −𝜆1 iff 𝐺 is bipartite, in which case the spectrum is symmetric around 0. 

▪ 𝑑̅ ≤ 𝜆1  ∧  √Δ(𝐺) ≤ 𝜆1 ≤ Δ(𝐺) (where Δ, 𝑑̅ are the max & average degrees of 𝐺). 

o If 𝐺 is connected, then 𝜆1 has multiplicity 𝟏 and strictly-positive eigenvector, which is 

the only eigenvector with homogeneous entries’ sign. 

o If 𝐺 is 𝑑-regular, then: 

▪ 𝜆1 = 𝑑 with multiplicity as the number of components, and eigenvectors which 

are constant over each component. 

▪ ∀𝑆, 𝑇 ⊂ 𝑉:     (𝑑 − 𝜆2)
|𝑆||𝑇|

|𝑉|
≤  𝑒(𝑆, 𝑇) ≤ (𝑑 − 𝜆𝑛)

|𝑆||𝑇|

|𝑉|
    (𝑆, 𝑇 may intersect). 

• Intuitively, 𝝀𝟐, 𝝀𝒏 determine the randomness of the graph. In particular, 

𝜆2, 𝜆𝑛 ≈ 0 ⇒ [∀𝑆, 𝑇 ⊂ 𝑉:  𝑒(𝑆, 𝑇) ≈ 𝑑
|𝑆||𝑇|

|𝑉|
]. 

o If 𝐻 is a subgraph of 𝐺, then 𝜆1(𝐻) ≤ 𝜆1(𝐺). 

• Laplacian matrix – basic properties (henceforth 𝝀 will refer by default to 𝑳’s eigenvalues): 

o Eigenvalues are real, invariant to nodes’ order, and satisfy 𝟎 = 𝝀𝟏 ≤ ⋯ ≤ 𝝀𝒏 ≤ 𝟐𝚫(𝑮). 

o Δ(𝐺) + 1 ≤ 𝝀𝒏 ≤ 2Δ(𝐺),  𝜆𝑛 = 2Δ(𝐺) ⇔ 𝐺 is a regular bipartite graph. 

o 𝑐 ⋅ 𝐿𝐺 − 𝐿𝐻 is positive semidefinite ⇒ 𝑐 ⋅ 𝜆2(𝐺) ≥ 𝜆2(𝐻). 

• Eigenvectors as optimization: 

o For general symmetric matrix:  𝜆𝑘 = min
𝑈 is 𝑘−dim subspace of Rn

max
𝑥∈𝑈

𝑥𝑇𝑀𝑥

𝑥𝑇𝑥
. 

o For 𝑀 ≔ 𝐿, 𝑥 is actually a function 𝑥: 𝑉 → 𝑅. 

o 
𝒙𝑻𝑳𝒙

𝒙𝑻𝒙
=

∑ 𝑑𝑣𝑥𝑣
2

𝑣 −∑ 𝑥𝑢𝑥𝑣(𝑢,𝑣)∈𝐸

∑ 𝑥𝑣
2

𝑣
=

∑ |𝑿𝒖−𝒙𝒗|𝟐
(𝒖,𝒗)∈𝑬

∑ 𝒙𝒗
𝟐

𝒗
. 

▪ In particular, 
𝑥𝑇𝐿𝑥

𝑥𝑇𝑥
= 0 ⇔ [𝑥𝑣 ≡ 𝑐𝑜𝑛𝑠𝑡 over any connectivity component]. 

▪ Hence, always 𝝀𝟏 = 𝟎 and 𝑥1 = (1, … ,1). 

▪ Also, the number of 0-eigs (max
𝜆𝑘=0

𝑘) is the number of connectivity components. 

http://www.cs.tau.ac.il/workshop/icore-day/slides/2014/luca.trevisan.slides.pdf
http://www.cs.yale.edu/homes/spielman/sgta/SpectTut.pdf
http://www.cs.yale.edu/homes/spielman/561/
http://math.mit.edu/~csikvari/spectral_graph_theory_V3.5.pdf
http://math.uchicago.edu/~may/REU2012/REUPapers/JiangJ.pdf
http://math.mit.edu/~csikvari/spectral_graph_theory_V3.5.pdf
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• Examples – spectra of standard graphs: 

o Clique (𝐾𝑛): 

▪ 𝐴𝐾𝑛
:   (

𝑛 − 1 −1
1    𝑛 − 1

) (i.e. (𝑛 − 1, −1, … , −1)) 

▪ 𝐿𝐾𝑛
= (𝑛 − 1)𝐼 − 𝐴𝐾𝑛

: (
    0    𝑛

1    𝑛 − 1
) (i.e. (    0    , 𝑛  , … ,   𝑛 )) 

▪ 𝐿𝐿(𝐾𝑛) (line-graph):  (
2𝑛 − 4 𝑛 − 4 −2

1 𝑛 − 1 (
𝑛
2

) − 𝑛) 

o Cycle/path’s Laplacian:  𝜆𝑘 = 2 − 2 cos
2𝜋𝑘

𝑛
 (with multiplicity 2),  𝑥𝑘,𝑖~ cos(𝑎𝑖𝑘 + 𝑏). 

• Kirchhoff's matrix tree theorem: the number of spanning trees in a connected graph is 
1

𝑛
Π𝑖=1

𝑛−1𝜆𝑖. 

• Random walk on a graph is a Markov chain with transitions 𝑻 ≔ 𝑨𝑫−𝟏 (not symmetric), where 

the stationary state 𝑝0 = 𝑇𝑝0 corresponds to 𝜆 = 1. 

o Convergence rate:   |𝑝𝑡(𝑣) − 𝜋(𝑣)| ≤ √𝑑𝑣/𝛿(𝟏 − 𝝀𝒏−𝟏)𝒕  (𝛿 ≔ min
u

𝑑𝑢) 

o Note:  𝐿𝑠𝑦𝑚 = 𝐼 − 𝐷−1/2𝑇𝐷1/2     ⇒     𝟏 − 𝝀𝒏−𝟏(𝑻) = 𝝀𝟐(𝑳𝒔𝒚𝒎). 

• Planar graphs: 𝜆2 < 𝜆5 (strict inequality); 𝜆2 ≤
8Δ(𝐺)

|𝑉|
. 

Spectral embedding 
• Min squared-distance embedding: map 𝑉 → 𝑅𝑘 with minimized 𝑥𝑇𝐿𝑋 = ∑ |𝑥𝑢 − 𝑥𝑣|2

𝐸 . 

o Goal is drawing the graph in low dim with short (or more balanced) edges, as derived from 

the squared penalty. The perpendicularity constraints are less intuitive to me. 

o 𝑘 = 1: trivial is 𝑥 ≡ 1 = 𝑥(𝜆1), but enforcing 𝑥 ⊥ 𝟏 yields 𝑥 = 𝑥(𝜆2). 

o 𝑘 = 2: trivial is 𝑥𝑣 = (1,1) or 𝑥𝑣 = (𝑥𝑣(𝜆2), 𝑥𝑣(𝜆2)); enforcing certain perpendicularity 

yields 𝑥𝑣 = (𝑥𝑣(𝜆2), 𝑥𝑣(𝜆3)). 

• Tutte planar embedding: fix several nodes and put every other node in the mean of its neighbors.  

o Under certain conditions, it’s indeed a crossing-free planar embedding with convex faces. 

• Isomorphism testing: graphs are isomorphic ⇔ [the spectrum is identical and eigenvectors are 

identical up to sign (i.e. embedding is identical up to rotations and reflections)]. 

o Graphs with strong regularity or large degeneracy may require many eigenvectors to 

distinguish between the nodes embeddings, making the isomorphism test inefficient. 

▪ Polynomial running time is possible if degeneracy is small [Babai, 82]. 

 
The right graph is the min-squared-distance embedding of the left one 

  

https://en.m.wikipedia.org/wiki/Tutte_embedding
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Conductance 
• Conductance: 

o Of a cut 𝑆 ⊂ 𝑉:   𝜙(𝑆) ≔
𝐸(𝑆,𝑆̅)

𝑣𝑜𝑙(𝑆)
    (𝑣𝑜𝑙(𝑆) ≔ ∑ 𝑑𝑣𝑣∈𝑆 ) 

o Of a graph 𝐺:  𝜙(𝐺) ≔ min
S⊂V | vol(S)≤

1

2
𝑣𝑜𝑙(𝑉)

𝜙(𝑆) 

o Cuts of small conductance correspond to more homogeneous or closed groups 𝑺 and 𝑺̅. 

o Finding 𝜙(𝐺) (sparsest cut problem) is NP-complete, though approximation is available 

in 𝑂(√log 𝑛) [Arora, 2009]. 

           
The conductance and corresponding min cut in 3 graphs (left to right): 0, 1/9, 1/3 

• Cheeger inequality:  
𝝀𝟐

𝟐
≤ 𝝓(𝑮) ≤ √𝟐𝝀𝟐 

o Private case: 𝜙(𝐺) = 0 ⇔ 𝐺 is disconnected ⇔ 𝜆2 = 0. 

o Note: convergence rate of random walk (see above) ∝
1

𝜆2
∝

1

𝜙2(𝐺)
. 

• In analog to connectivity: number of small eigs = number of disjoint sets of small conductance. 

o Order-k conductance – between 𝑘 disjoint sets:  𝜙𝑘(𝐺) ≔ min
disjoint 𝑆1…𝑆𝑘

max
1≤i≤k

𝜙(𝑆𝑖). 

o 𝝓𝒌(𝑮) = 𝟎 ⇔ 𝑮 has ≥ 𝒌 connected components ⇔ 𝝀𝒌 = 𝟎. 

o 
𝜆𝑘

2
≤ 𝜙𝑘(𝐺) ≤ 𝑂(𝑘2) ⋅ √𝜆𝑘. 

      
The order-3 conductance and corresponding min cuts in 2 graphs (left to right): 1/2, 1/6 

• Eigenvalue gap: 𝜆𝑘+1 > 5𝑘√𝜆𝑘 ⇒ ∃𝑘 sets of small(?) conductance [Tanaka, 2012]. 

o Note: analog to 𝑘 connectivity components causing 𝜆𝑘 = 0 ∧ 𝜆𝑘+1 > 0. 
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Spectral clustering 
• Problem: apply clustering to data points 𝑉 whose relations are expressed by a graph 𝐺 = (𝑉, 𝐸). 

o Note: straight-forward generalizations of the spectral theory to weighted graph allow to 

express non-binary relations as well. 

• Graph bisection (simple private case of stochastic block models or planted partition model): 

o The graph is modeled by the adjacency matrix 𝐴 whose entries are random Bernoulli 

variables with parameter 𝑝 (inside 𝑉1 or inside 𝑉2) or 𝑞 < 𝑝 (between 𝑉1 and 𝑉2). 

o 𝐴 can be seen as perturbation of the underlying probabilities matrix (up to permutations): 

 

o The partition 𝑉 = 𝑉1⨃𝑉2 can be recovered from the 2nd(-largest) eigenvector of 𝐴. 

o In general, perturbation theory can be very powerful for analysis of random objects. “For 

example, it inspired Shkolnisky and Singer to design an exciting algorithm for the image 

processing problems that occur in cryo-electron microscopy” [Spielman, Yale]. 

• Eigenvectors-based clustering: 

o Compute 𝑘 smallest eigenvectors of 𝐿 (𝑥1 … 𝑥𝑘). 

o Define the 𝑘-dimensional spectral embedding 𝐹: 𝑉 → 𝑅𝑘, 𝐹(𝑣) ≔ (𝑥1
𝑣 … 𝑥𝑘

𝑣). 

o Apply 𝑘-means. 

• Conductance-based clustering (LRTV?): find 𝑘 small-conductance sets (not always trivial to do). 

• Image segmentation: detect objects as “closed” (i.e. small-conductance) sets of pixels. 

o Current spectral segmentation methods mostly don’t use any former image processing 

tools. Future incorporation of such essentially different methods may be beneficial. 

 
Representation of an image as a graph of pixels 

           
2nd, 3rd and 4th eigenvectors assign large (white) values to different small-conductance sets 

  

http://www.cs.yale.edu/homes/spielman/561/lect21-15.pdf
https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf
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Social Network Analysis (SNA) 
Main sources: SNA introduction notes by UVA, MIT , Analytic Technologies and Orgnet. 

Basic definitions 
• Social network analysis is the science of connections between human entities. 

• Main research approaches: 

o Socio-centered: focused on global properties and structure of the graph of connections. 

▪ Example – network centralization: measure of the imbalance (i.e. variance) in 

centrality of nodes – how much the whole network is centralized in few nodes. 

o Ego-centered: focused on local properties and structures, small-range influences, etc. 

▪ Example – network reach: it is claimed that in certain senses, no significant 

influence can reach farther than 2 steps in a network, leading to measuring local 

centrality through the number of connections in distance ≤ 2. 

• SNA model 𝑵 = (𝑽, 𝑳, 𝑭𝑽, 𝑭𝑳) is a generalization of a graph: 𝑽=nodes; L=links (may include both 

directed & undirected, and more than one link between the same 2 nodes); 𝑭𝑽, 𝑭𝑳 are functions 

specifying the properties of the nodes & links respectively. 

o Terminology:   actors = nodes = vertices;   links = ties = edges;   geodesics = shortest paths. 

• Sociogram: visual graph representation of a social network. May visualize 𝐹𝑉 & 𝐹𝐿 as well (e.g. 

through size of nodes and width of edges). 

o Sociomatrix: adjacency matrix of (either all or part of the) social links. 

 
• Mid-cohesive types of subgraphs (between connectivity-components and cliques): 

o 𝒏-clique: maximal subgraph in which ∀𝑢, 𝑣: 𝑑(𝑢, 𝑣) ≤ 𝑛     (𝑛 = 1 ⇒ standard clique). 

o 𝒏-clan: an 𝑛-clique in which all 𝑑(𝑢, 𝑣)’s paths use only nodes from within the subgraph. 

o 𝒏-club: maximal subgraph with diameter 𝑛. 

▪ 𝑛-clan ⇒ 𝑛-club ∧ 𝑛-clique. 

▪ 𝑛-club doesn’t have to satisfy the maximality of 𝑛-clique, hence ⇏ 𝑛-clan. 

o 𝒌-plex: subgraph in which ∀𝑣: 𝑑𝑣 ≥ 𝑛 − 𝑘  (degree within the subgraph). 

o 𝒌-core: subgraph in which ∀𝑣: 𝑑𝑣 ≥ 𝑘   (degree within the subgraph). 

o Level-𝒄 clique: any 𝑢, 𝑣 share at least 𝑐 neighbors (i.e. have affiliation ≥ 𝑐). 

https://www.uva.nl/binaries/content/documents/personalpages/n/o/w.denooy/en/tab-one/tab-one/cpitem%5B26%5D/asset?1355372751494
https://ocw.mit.edu/courses/sloan-school-of-management/15-599-workshop-in-it-collaborative-innovation-networks-fall-2011/lecture-notes/MIT15_599F11_lec04.pdf
http://www.analytictech.com/networks/subgroup.htm
http://www.orgnet.com/sna.html
http://www.orgnet.com/sna.html
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Popular metrics 
• Size metrics: 𝑛 = |𝑉|, 𝑚 = |𝐸|. 

• Connectivity (cohesion) metrics: 

o Density: |𝐸|/ (
𝑛
2

). 

o Diameter (max distance between two nodes), average distance between nodes. 

o Number of connectivity components / small-conductance sets / cliques. 

o Clustering coefficient of a node 𝑣: 𝐶𝑣 ≔
number of edges between neighbors of 𝑣

number of possible edges between them
. 

▪ Clustering coefficient of a graph: 𝐶 ≔
1

𝑛
∑ 𝐶𝑣𝑣 =

number of closed triplets

number of all triplets
. 

▪ “How cohesive the neighborhood is”. 

o Subgroup cohesion:  
percent of connections within subgroup

percent of connections between subgroup and the outside
. 

• Node centrality metrics: 

o Degree (activity): number of edges. 

o Betweenness: number of shortest paths containing the node. 

▪ Girvan-Newman algorithm iteratively removes the largest-betweenness edge in 

order to detect communities in complex networks, yielding a dendrogram. 

 
Example: a dendrogram of the tree of life 

o Closeness (efficiency): average distance to other (reachable) nodes. 

o Eigenvector centrality (eigencentrality): the first (largest) eigenvector of the adjacency 

matrix (note that all the entries are non-negative). In particular, 𝑥𝑢 =
1

𝜆
∑ 𝑎𝑢𝑣𝑥𝑣𝑣 . 

o Information centrality: 𝐼𝐶(𝑢) ≔
1

1

𝑛
∑ 𝑑(𝑢,𝑣)𝑣

= harmonic average of the “information” 

𝐼𝑢𝑣 ≔
1

𝑑(𝑢,𝑣)
 (intuitively measuring SNR where the noise ∝ 𝑑(𝑢, 𝑣)). 

o Random walk centrality (Markov centrality): expected number of steps required to reach 

the node in a random walk beginning at another random node. 

o Note: asymmetric centrality (e.g. popularity, prestige, ranking) should use these metrics 

(possibly under variations) wrt directed edges. 

 
Examples for things that may flow in social networks (MIT). 

Choice of centrality metric should correspond to the context of the connections. 

https://ocw.mit.edu/courses/sloan-school-of-management/15-599-workshop-in-it-collaborative-innovation-networks-fall-2011/lecture-notes/MIT15_599F11_lec04.pdf


Ido Greenberg  2019 

15 
 

Further models and methods 
• Blockmodeling: sort the adjacency matrix to have meaningful blocks. 

     
Example: a bipartite graph, its (sorted) adjacency matrix, and the corresponding block-model 

• Statistical actor-oriented models (ego-centered approach): form hypotheses regarding local 

properties in the network (e.g. “there are more occurrences of a certain local pattern than there 

would have been in random”) and test them using statistical tools, e.g. Exponential Random 

Graph Models (ERGM) and Markov Chain Monte Carlo (MCMC). 

Small-world network 

• Small-world is a model of network consisting of dense clusters with sparse links between them. 

• Small-world networks keep both small average distance (“close to everyone”) and large 

clustering coefficient (“non-sparse neighborhood”) per total number of links. 

o Specifically 𝑳 ≔ 𝑬[𝒅(𝒖, 𝒗)] ∝ 𝐥𝐨𝐠 𝒏, explaining the famous of 6 degrees of separation. 

o Allowed by relatively large number of nodes with very large degree (hubs), or equivalently 

– by fat-tailed distribution of the nodes’ degree. 

o Analog to traffic routes: most roads are local, highroads connect cities, and air-lines 

connect countries. 

• The opposite is a network with only local links (e.g. lattice graph, or network of connections 

between people in various centuries), resulting in large average distance (large-world). 

• Several methods to construct small-world networks are available. Watts-Strogatz mechanism, for 

example, constructs a small-world graph as a mix of lattice and random graph. 

• The dependence on small number of hubs makes the network’s average distance robust to 

deletion of random nodes (since most nodes are peripheral), even though it is sensitive to 

adversary deletion of the hubs. 

o The robustness to random perturbations is hypothesized to have made relations between 

genes behaving as a small-world network. 

• Small-world metrics: 

o Small-worldness: 𝜎 ≔
𝐶/𝐶𝑟𝑎𝑛𝑑

𝐿/𝐿𝑟𝑎𝑛𝑑
     (clustering coefficient & average distance). 

▪ Small-world ⇔ 𝜎 > 1. 

▪ This metric is often too sensitive to the network’s size. 

o Small-world index: 𝑆𝑊𝐼 ≔
𝐿−𝐿𝑙𝑎𝑡𝑡𝑖𝑐𝑒

𝐿𝑟𝑎𝑛𝑑−𝐿𝑙𝑎𝑡𝑡𝑖𝑐𝑒
⋅

𝐶−𝐶𝑙𝑎𝑡𝑡𝑖𝑐𝑒

𝐶𝑙𝑎𝑡𝑡𝑖𝑐𝑒−𝐶𝑟𝑎𝑛𝑑
   (0 ≤ 𝑆𝑊𝐼 < 1). 

▪ SWI-ideal network (unreachable): 𝐶 = 𝐶𝑙𝑎𝑡𝑡𝑖𝑐𝑒  ∧  𝐿 = 𝐿𝑟𝑎𝑛𝑑. 

• Scale-free network (ultra-small world): 𝑃(𝑑𝑣 ≥ 𝑘)~𝑘−𝛾 asymptotically, yielding 𝐿 ∝ log log 𝑛. 

https://en.wikipedia.org/wiki/Small-world_network
https://en.wikipedia.org/wiki/Six_degrees_of_separation
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Random, small-world and scale-free networks – along with the corresponding distributions of degrees 


