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Information Theory and Related Topics 

This summary of selected topics in (and related to) information theory is mostly based on part A of the 

book Information, Physics, and Computation by Marc Mézard and Andrea Montanari (Stanford University, 

2009). The chapter about Kolmogorov complexity is based on Elements of Information Theory by Cover 

and Thomas (2006). Other sources are referred to from within the text as needed. 

Summarized by Ido Greenberg in 2019. 
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Summarizing Table: Intuitive Interpretations 
 

Concept 
Interpretation 

Randomness & Uncertainty Coding & Information 

Surprise 
log 1/𝑝(𝑥) 

Improbability of event Length of a word 

Entropy 
𝐻𝑋(𝑝) ≔ 𝐸𝑝[log 1/𝑝] 

Average surprise 
(also: log number of effectively-
possible states (AEP)) 

Average length of words 
(also: log number of possible 
messages) 

Cross entropy 
𝐻𝑋(𝑝, 𝑞) 

Average surprise in a phenomenon 𝑝 
modeled by 𝑞 

Length of 𝑞-based code used 
for 𝑝-based source 

KL-divergence 
𝐷(𝑝||𝑞) 

(~difference between 𝑝 and 𝑞) 

𝑒−𝑛𝐷 is the asymptotic probability of 
observing 𝑝 (or farther) instead of 𝑞 
(Sanov) 

Extra-length of 𝑞-based code 
used for 𝑝-based source 

Mutual information 
𝐼𝑋𝑌 

(~statistical dependence of 𝑋 and 𝑌) 

Randomness of 𝑌 after conditioned 
on 𝑋 

Possible shortening of 𝑌 
coding if already knowing 𝑋 

 

Relations between entropy (𝐻𝑋, 𝐻𝑌), joint entropy (𝐻𝑋𝑌), conditional entropy (𝐻(𝑋|𝑌),𝐻(𝑌|𝑋)) and 

mutual information (𝐼𝑋𝑌): 

 

  

𝐼𝑋𝑌  𝐻𝑋|𝑌  𝐻𝑌|𝑋  

𝐻𝑋  𝐻𝑌  

𝐻𝑋,𝑌  
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Summary 
Introduction 

1. Entropy – measure of randomness or expected surprise:  𝐻𝑋(𝑝) ≔ 𝐸[log2 1/𝑝(𝑋)] 

a. More randomness (e.g. richer language) ⇒ longer description per instance of the 

phenomenon (e.g. longer words) ⇒ each instance of the phenomenon carries more info. 

b. Example – 𝑀-faces fair dice: 𝐻 = log2 𝑀 = number of bits required to describe a roll. 

c. For 𝑀 possible values: 𝟎 ≤ 𝑯𝑿 ≤ 𝐥𝐨𝐠𝟐 𝑴 – with equalities at determinism (𝑝(𝑥0) = 1) 

and complete randomness (𝑝(𝑥) ≡ 1/𝑀). 

d. 𝑯𝑿,𝒀 ≤ 𝑯𝑿 + 𝑯𝒀 with equality iff X,Y are independent. 

e. Behaving nicely under partition of space to 𝑋 = 𝑋1 ∪ 𝑋2. 

2. Generalizations of entropy to continuous 𝑋: 

a. Differential entropy – ℎ(𝑓) ≔ − ∫ 𝑓 log 𝑓 𝑑𝑥: useful in spite of some bad properties 

caused by the non-dimensionless and not-bounded-by-1 𝑓(𝑥) within the log. 

b. Limiting density of discrete points: uses kind of limit of sampling points to normalize 𝑓 

within the log. 

3. Entropy rate of a sequence {𝑋𝑡}: ℎ𝑋 ≔ lim
t→∞

𝐻𝑋𝑡
/𝑡  

4. 𝐻𝑌 = 𝐼𝑋𝑌 + 𝐻𝑌|𝑋  =  mutual information + conditional entropy. 

5. Cross entropy:  𝐻𝑋(𝑝, 𝑞) ≔ 𝐸𝑝 (log
1

𝑞(𝑥)
) 

a. KL-divergence – measure of distance between distributions (though not a formal metric): 

𝐷(𝑝||𝑞) ≔ 𝐸𝑝[log 𝑝/𝑞] 

b. Length of 𝑞-based code used for 𝑝-based phenomenon = 𝐻(𝑝, 𝑞) = 𝐻(𝑝) + 𝐷(𝑝||𝑞) = 

inherently required length + extra-length due to approximation of 𝑝 by 𝑞. 

6. Data processing inequality:  𝑋 → 𝑌 → 𝑍  (e.g. 𝑍 = 𝑓(𝑌))    ⇒    𝐼𝑋𝑍 ≤ 𝐼𝑋𝑌. 

a. In particular, any transformation 𝑍 = 𝑓(𝑌) can’t improve inference from 𝑌 about 𝑋. 

7. Shannon’s source-channel separation principle: the problem of information transmission from a 

single source to a single receiver can be split into 2 independent components – encoding the 

output of the source (compression) and encoding the transmitted message (error-correction). 

8. Data compression: 

a. Language: distribution 𝑝 over N-long strings 𝑥 ∈ 𝜒𝑁 over an alphabet 𝜒). 

b. Shannon: the optimal code’s (𝑤: 𝜒𝑁 → {0,1}∗) mean length satisfies 𝑯𝑿 ≤ 𝑳𝑵
∗ ≤ 𝑯𝑿 + 𝟏. 

c. Huffman code is optimal over 𝜒𝑁 (for any finite 𝑁). 

i. Build decoding tree incrementally from the leaves (strings) by iteratively uniting 

the 2 least-probable nodes, until only one node remains. 

d. Practical coding is still challenging due to unknown distributions and memory limitations. 

9. Channel coding theorem (data transmission): given a (possibly noisy) channel 𝑋 → 𝑌, 𝑋 can be 

encoded in advance such that the probability of 𝑌-decoding-error is nearly 0, and the rate of 

transmitted data (𝑅 =
encoded len

original len
) is nearly the capacity of the channel (𝐶 = max

p(x)
𝐼𝑋𝑌). 

a. I.e. we can encode input as efficiently as in Shannon’s theorem, while arranging the 

distribution of the encoded message 𝒑(𝒙) to minimize the info loss in the channel. 

10. Fano’s inequality: the decoded message 𝑋 → 𝑌 → �̂� has error probability 𝑃(�̂� ≠ 𝑋) ≥
𝐻(𝑋|𝑌) −1

log|𝜒|
. 



Ido Greenberg  2019 

4 
 

Statistical Physics 
11. Physical systems are often modeled by assuming the probability of various states {𝑥} to depend 

on their energy through Boltzmann distribution: 

𝒑𝜷(𝒙) =
𝟏

𝒁(𝜷)
𝒆−𝜷𝑬(𝒙)          (𝛽 = 1/𝑇,   𝑍(𝛽) = Σ𝑥𝑒−𝛽𝐸(𝑥) = "𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏") 

a. High-temperature limit (𝛽 → 0) ⇒ uniform distribution. 

b. Low-temperature limit (𝛽 → ∞) ⇒ 𝑥 must be a ground state – a global minimum of 𝐸. 

c. The canonical entropy of the system 𝑆(𝛽) can be calculated directly from the partition 

function 𝑍(𝛽), and counts the (log) possible system states – e.g. log|{all states}| in the 

high-temperature limit and log|{ground states}| in the low-temperature limit. 

12. In the Thermodynamic limit 𝑁 → ∞, the free energy 𝐹(𝛽) ≔ −
1

𝛽
log 𝑍(𝛽) is replaced with the 

free energy density 𝑓(𝛽) ≔ lim
𝑁→∞

𝐹𝑁(𝛽)/𝑁, whose non-continuities determine phase transitions. 

13. Ising model: Model of magnetic materials as cubic lattice with Energy determined by an external 

magnetic field, and internal interactions between the spins of adjacent molecules. 

a. According to the model, a sufficiently cold material can have strong magnetic properties 

independently of the magnetic field. 

Combinatorial Optimization 
14. A combinatorial optimization problem consists of a finite set of configurations along with cost 

function (which is often binary – checking some conditions on the configuration). 

a. Continuous optimization (e.g. linear programming) is out of the scope. 

15. Possible goals of a combinatorial problem (in decreasing order of difficulty): 

a. Optimization: find the best configuration. 

b. Evaluation: find the best cost. 

c. Decision: is there configuration better than some threshold / satisfying some conditions? 

16. Polynomial reduction: converting one problem to another such that the results are preserved. 

a. If B is reducible to A then B is easier in the sense that solving A results in solving B. 

17. Complexity classes: 

a. P: can be decided in polynomial time (e.g. Euler cycle). 

b. NP: can be decided in polynomial time be non-deterministic Turing machine (NDTM), 

which accepts iff any of the configurations is found to satisfy the decision condition. 

i. Equivalently, a configuration can be certified in polynomial time (e.g. graph 

isomorphism). 

c. NP-complete: NP and also NP-hard, i.e. reducible-to from any other NP problem (e.g. 

satisfiability and 3-satisfiability, Hamiltonian cycle, traveling salesman). 

d. Co-NP: its negation is in NP (since acceptance of NDTM is not expressed in a single output 

true/false, it can’t be simply flipped, thus NP & co-NP are not trivially equivalent). 

18. It is often believed yet unknown that 𝑷 ≠ 𝑵𝑷 (and 𝑁𝑃 ≠ 𝑐𝑜 − 𝑁𝑃) – otherwise many hard 

problems (which require exponential time to solve by any known algorithm) must be 

polynomially-solvable. 

19. Other optimization problems worth knowing: minimum spanning tree, max-cut, coloring, 

numbers partitioning (and zero-sum subset existence), error correction, energy minimization. 
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Information and Probability 

20. Asymptotic equipartition property (AEP): for iid 𝑋 = (𝑋1 … 𝑋𝑛),  
1

𝑛
log

1

𝑝(𝑥)
→ 𝐻𝑋(𝑝), i.e. we 

expect to asymptotically observe events only from the ~2𝑛𝐻 events of probability ~2−𝑛𝐻. 

21. Sanov’s theorem: for 𝑛 iid variables with distribution 𝑝, the probability of rare events – defined 

by empirical distribution 𝑞 ≠ 𝑝 (or formally by a set {𝑞} of distributions) – decays as 𝑒−𝑛𝐷(𝑞||𝑝). 

22. Maximum entropy distribution: under constraints {𝐸𝑓[𝑟𝑖(𝑥)] = 𝛼𝑖}
𝑖=1

𝑚
, the distribution with 

maximum entropy is of the form 𝑓(𝑥) = 𝑒𝜆0+∑ 𝜆𝑖𝑟𝑖(𝑥)𝑚
𝑖=1 . 

a. In particular, Gaussian has maximum entropy under mean & variance constraints. 

23. Gibbs free energy is a convex functional over distributions 𝐺[𝑝] ≔ 𝐸𝑝[energy] + temperature ⋅

𝐻(𝑝), from which the Boltzmann distribution can be derived as its minimum, which is useful for 

understanding the model, calculating rare states probabilities, and finding approximated models. 

24. Markov chain Monte Carlo (MCMC) methods construct a Markov chain which is guaranteed to 

converge to a given distribution 𝑝 (possibly not normalized), so that by simulation of the Markov 

chain, a sampling from 𝒑 is applied. 

a. Gibbs sampling: simulate Markov chain of configurations 𝑥(𝑡) ∈ 𝜒𝑑, where every 

transition modifies a single dimension 1 ≤ 𝑖 ≤ 𝑑 of 𝑥 according to its marginal 

distribution 𝑃 (𝑥𝑖
(𝑡+1)

|𝑥𝑖 ̂
(𝑡)

). 

i. Heat bath algorithm: Gibbs sampling on Boltzmann distribution wrt some energy 

function 𝐸. 

ii. Example: in a system of 𝑑 spins, every iteration simulates the change in one spin. 

25. Simulated annealing performs optimization of a cost function 𝐸 by applying MCMC sampling on 

Boltzmann distribution of 𝐸 with periodically changing 𝛽(= 1/𝑇) – alternating between low 

values (allowing exploration through easy transitions) and high values (allowing optimization, 

since only energy-decreasing transitions remain with positive probability). 

a. Note: applying only the low-temperature limit 𝛽 → ∞ results in greedy search and is 

sensitive to local (in terms of the search geometry) minima of 𝐸. 

Kolmogorov Complexity 
26. Kolmogorov complexity of a string: 𝑲(𝒙) ≔ the shortest binarily-encoded program that prints 𝑥. 

a. Intuition: “how complex it is to describe the string”. 

b. Universality: 𝐾(𝑥) is invariant to the computer that runs the program (up to a constant). 

c. Upper bound: 𝑲(𝒙) ≤ 𝒍(𝒙) + 𝒄  (since 𝑥 can be printed by being hard-coded). 

d. Lower bound: while long strings can have short descriptions (e.g. 𝑥 = 0 … 0), counting 

argument trivially yields |{𝒙 ∈ {𝟎, 𝟏}∗: 𝑲(𝒙) < 𝒌}| < 𝟐𝒌. 

e. Relations with entropy: for random iid strings 𝑋𝑛 ≔ (𝑋1 … 𝑋𝑛),  𝑬 [
𝟏

𝒏
𝑲(𝑿𝒏)] → 𝑯(𝑿). 

27. Any Incompressible infinite sequence (i.e. lim
n→∞

𝐾(𝑥1…𝑥𝑛|𝑛)

𝑛
= 1) should in particular pass any 

computable statistical test of randomness. 

a. E.g. a sequence {𝑥𝑖} with �̅� → 𝜽 can be asymptotically compressed by factor ≈ 𝑯(𝜽) =

−𝜃 log 𝜃 − (1 − 𝜃) log(1 − 𝜃), which is smaller than 1 iff 𝜃 ≠ 1/2. 

28. 𝐾(𝑥) is incomputable (finding the shortest-encoded program that eventually prints 𝑥 would 

require solving the halting problem). 

a. Chaitin’s (incomputable) number: Ω ≔ ∑ 2−𝑙(𝑝)
𝑝:𝑈(𝑝) ℎ𝑎𝑙𝑡𝑠 = 𝑃(𝑈(𝑝) ℎ𝑎𝑙𝑡𝑠). 
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29. Universal probability: 𝑷𝑼(𝒙) ≔ ∑ 2−𝑙(𝑝)
𝑝:𝑈(𝑝)=𝑥 = 𝑃(𝑈(𝑝) = 𝑥) ≈ 2−𝐾(𝑥). 

30. Minimum description length principle:  𝑝 ≔ argmin
p∈pdfs

𝐾(𝑝) + log
1

𝑝({𝑥1…𝑥𝑛})
. 

a. I.e. given data, the best model is defined to minimize [its description length] + [data 

description length using corresponding Shannon’s code], which in particular follows 

Occam’s razor principle. 

b. Can be seen as Bayesian inference with the universal prior 𝑃0(𝑝) ≔ 𝑃𝑈(𝑝) ≈ 2−𝐾(𝑝). 

A Sample of Applications in Machine Learning 
31. Decision trees construction / entropy minimization. 

32. Classification loss function / cross entropy. 

33. Feature selection / mutual information minimization. 

34. Bayesian networks / mutual information. 

35. Independent component analysis (ICA) / mutual information minimization. 

36. Variational autoencoders loss function / KL-divergence. 
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Introduction to Entropy and Information 

Entropy 
1. Entropy (discrete):  𝐻𝑋(𝑝) ≔ − ∑ 𝑝(𝑥) log2 𝑝(𝑥)𝑥∈𝑋 = ∑𝑝 log 1/𝑝 = 𝐸[log 1/𝑝(𝑋)]  

a. If log 1/𝑝 represents the surprise of an event, then the entropy is just the expected 

surprise, which is intuitively the disorder/uncertainty/randomness in the variable. 

b. The expected surprise cannot be increased by a single “extreme” event: 

i. lim
𝑝→0

𝑝 log 1/𝑝 = lim
𝑝→0

log 1/𝑝

1/𝑝
= lim

𝑥→∞

log 𝑥

𝑥
= 0. 

ii. In particular, uniform distribution maximizes the entropy over M events. 

iii. Example – entropy of Bernoulli variable as function of 𝑝: 

 

c. Units: bits (for log2 𝑝) or nats (for ln 𝑝). 

i. The entropy of uniform distribution over 𝟐𝑴 events (e.g. M fair coins) is 

∑ 1/2𝑀 log2
1

1/2𝑀 = 2𝑀 (
1

2𝑀 log2 2𝑀) = 𝑴 bits. 

1. Correspondingly, the entropy of M-faces fair dice is log2 𝑀. 

2. KL-divergence (Kullback-Leibler):  𝐷(𝑞||𝑝) ≔ ∑ 𝑞(𝑥) log
𝑞(𝑥)

𝑝(𝑥)𝑥 = 𝐸𝑞 [log
𝑞

𝑝
] 

a. 𝐷(𝑞||𝑝) ≥ 0 with equality iff 𝑞 ≡ 𝑝. 

b. Commonly interpreted as distance between distributions, although not satisfying 

symmetry or triangle’s inequality. 

c. Denoting 𝑢 ≔uniform distribution: 𝑫(𝒑||𝒖) = ∑𝑝 log
𝑝

1/𝑀
= 𝐥𝐨𝐠𝟐 𝑴 − 𝑯(𝒑) 

i. Amount of info loss (randomness increase) when approximating p using u. 

ii. In that sense, entropy expresses similarity to the uniform distribution. 

d. KL-divergence is the only measure of difference between distributions which satisfies 

some properties which are naturally analog to those of entropy (Arthur Hobson). 

e. Fisher information (see summary in advanced statistical theory) of a parameter in a 

parametric family of distributions, satisfies 𝐷(𝑝𝜃||𝑝𝜃+𝜖) ≈ 𝜖𝑇𝐼(𝜃)𝜖 as 𝜖 → 0. 

3. Basic properties of entropy: 

a. 𝟎 ≤ 𝑯𝑿 ≤ 𝐥𝐨𝐠𝟐 𝑴 – reaching the borders at determinism (𝑝(𝑥0) = 1) and complete 

randomness (𝑝(𝑥) ≡ 1/𝑀). 

b. 𝑯𝑿,𝒀 ≤ 𝑯𝑿 + 𝑯𝒀 with equality iff X,Y are independent. 

i. Independent case: 𝐻𝑋𝑌 = ∑ 𝑝𝑋𝑌 log 𝑝𝑋𝑌 = ∑𝑝𝑋𝑝𝑌(log 𝑝𝑋 + log 𝑝𝑌) = 𝐻𝑋 + 𝐻𝑌. 

ii. I believe that additivity of independent randomness is what enforces the 

surprise to be defined as log. Easier to see for 2 fair dices with M,N faces: we 

want 𝐬𝐮𝐫𝐩𝐫𝐢𝐬𝐞(𝑵) + 𝐬𝐮𝐫𝐩𝐫𝐢𝐬𝐞(𝑴) = 𝐬𝐮𝐫𝐩𝐫𝐢𝐬𝐞(𝑵𝑴), inducing surprise ∝ log. 

c. For space partition 𝑋 = 𝑋1 ∪ 𝑋2 with 𝑞(𝑋𝑖) = 𝑞𝑖 and 𝑟𝑖(𝑥) ≔ 𝑃(𝑥|𝑥 ∈ 𝑋𝑖) = 𝑝(𝑥)/𝑞𝑖: 

𝐻𝑋(𝑝) = 𝐻𝑋(𝑞) + 𝑞1𝐻𝑋1
(𝑟1) + 𝑞2𝐻𝑋2

(𝑅2) 

i. I.e. entropy can be considered separately in subspaces of 𝑋. 

d. Uniqueness: entropy is the only continuous function satisfying all these properties. 

https://idogreenberg.neocities.org/#_Self-studied_Courses_Summaries
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4. Since entropy expresses the (log) amount of different values a variable may accept, and since it is 

linear in the number of independent variables (e.g. H(2 dices)=2H(dice)), then it can be naturally 

seen as measure of information. 

5. Entropy rate of a sequence {𝑋𝑡}: ℎ𝑋 ≔ lim
t→∞

𝐻𝑋𝑡

𝑡
 

a. For iid variables it’s just ℎ𝑋 = 𝐻(𝑋1). 

b. For stationary process, ℎ𝑋 = lim
𝑡→∞

𝐻(𝑋𝑡|𝑋1 … 𝑋𝑡−1). 

c. Example – random walk on an undirected weighted graph: the stationary distribution is 

𝜋𝑖 =
∑ 𝑊𝑖𝑗𝑗

2𝑊
 (i.e. proportional to the weighted degree of the node), and the entropy rate is 

ℎ(𝜋) = 𝐻(𝑋2|𝑋1) = ⋯ = 𝐻 ({𝑊𝑖𝑗/2𝑊}
𝑖,𝑗

) − 𝐻({𝜋𝑖/2𝑊}𝑖), and in particular for 𝑛 

nodes with 𝑑 (constantly-weighted) edges each, ℎ(𝜋) = log 𝑛𝑑 − log 𝑛 = log 𝑑. 

d. In general, to efficiently describe the states of a Markov process, Shannon’s code (see 

below) can be applied on the stationary distribution, resulting in ℎ(𝜋) as average length 

per state. 

Differential entropy 
1. Differential entropy – naive generalization of discrete entropy: 𝒉𝑿(𝒇) ≔ − ∫ 𝒇(𝒙) 𝐥𝐨𝐠 𝒇(𝒙) 𝒅𝒙. 

2. Bad properties: 

a. dim 𝑓(𝑥) = 1/𝑑𝑥, thus the argument of the log is not dimensionless. 

b. Not invariant to change of variables. 

c. Can be negative (since 𝑓 > 1 is possible, e.g. 𝑈(0,1/2)). 

3. The conventional alternative generalization of entropy to continuous 𝑋 is the limiting density of 

discrete points (LDDP, by Jaynes, 1965), which essentially normalizes the argument 𝑓(𝑥) of the 

log by some 𝑚(𝑥), that kind of represents the limit density of points in (𝑥 − 𝑑𝑥, 𝑥 + 𝑑𝑥). 

4. Differential entropy still does form a useful global lower bound on expected prediction error: 

𝑬 [(�̂� − 𝑿)
𝟐

] ≥ 𝑉𝑎𝑟(𝑋) ≥
1

2𝜋𝑒
𝒆𝟐𝒉𝑿(𝒇) 

a. Note: equality holds above only for estimation of the mean of a gaussian. 

Cross entropy and mutual information 

1. Cross entropy:    𝑯𝑿(𝒑, 𝒒) ≔ 𝐸𝑝 (log
1

𝑞(𝑥)
) = − ∑ 𝑝(𝑥) log 𝑞(𝑥)𝑥  

a. Log-likelihood of a model is its cross entropy with the empirical distribution of the data: 

𝐥𝐨𝐠 𝑳𝑿(𝜽) = ∑ log 𝑞𝜃(𝑥𝑖)

𝑖∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠

= ∑ #𝑦 ⋅ log 𝑞𝜃(𝑦)

𝑦∈𝑣𝑎𝑙𝑢𝑒𝑠

= ∑ 𝑁𝑝𝑑𝑎𝑡𝑎(𝑦) log 𝑞𝜃(𝑦)

𝑦

= 𝑵𝑯(𝒑𝒅𝒂𝒕𝒂, 𝒒𝜽) 

2. Conditional entropy:  𝑯𝒀|𝑿 ≔ ∑𝑝(𝑥, 𝑦)log 𝑝(𝑦|𝑥) = 𝐸𝑋[𝐻𝑌|𝑋] 

a. “How much information Y adds beyond X”:  𝑯𝑿𝒀 = 𝑯𝑿 + 𝑯𝒀|𝑿 

i. Independent case:    𝐻𝑌|𝑋 = 𝐻𝑌  ⇒  𝐻𝑋𝑌 = 𝐻𝑋 + 𝐻𝑌 

3. Mutual information (mutual entropy):  𝑰𝑿𝒀 ≔ ∑𝑝(𝑥, 𝑦)log
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
= 𝐸𝑋𝑌 [log

𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
] 

a. X-Y symmetric. 

b. Info of Y  =  𝑯𝒀 = 𝑰𝑿𝒀 + 𝑯𝒀|𝑿  =  mutual info + info of Y beyond X. 

c. 𝐼𝑋𝑌 = 𝐻𝑌 − 𝐻𝑌|𝑋 = “how much the randomness of Y reduces when conditioning on X”. 

d. “Intersection of information” (in analogy to measures of sets): 𝐼𝑋𝑌 = (𝐻𝑋 + 𝐻𝑌) − 𝐻𝑋𝑌. 
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e. 𝑋 ⊥ 𝑌 ⇔ 𝐼𝑋𝑌 = 0 , 𝑋 ≡ 𝑌 ⇒ 𝐼𝑋𝑌 = 𝐻𝑋 = 𝐻𝑌. 

f. A Batman summary of relations: 

 

4. Data processing inequality: If 𝑿 → 𝒀 → 𝒁, i.e. 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥)𝑝(𝑦|𝑥)𝑝(𝑧|𝑦), then 𝑰𝑿𝒁 ≤ 𝑰𝑿𝒀. 

a. In particular, if we’re interested in 𝑋 and observe some 𝑌 = 𝑌(𝑋), we can’t gather more 

information by any transformation 𝑍 = 𝑍(𝑌). 

Data compression 
1. Binary code over alphabet 𝜒:  𝑤: 𝜒𝑁 → {0,1}∗   (each word mapped into a 0-1 sequence) 

a. Decodable: one-to-one (i.e. unambiguous). 

b. Instantaneous: 𝑤(𝑥1) is never a prefix of 𝑤(𝑥2)   (⇒ decodable). 

i. Any instantaneous code can be represented by a binary tree (the word encodes 

the navigation within the tree, and the leaf is the original string). 

 

2. Average length of code:  𝐿(𝑤) ≔ 𝐸𝑋𝑁[𝑙𝑤] = ∑ 𝑙𝑤(𝑥)𝑥∈𝑋𝑁  

3. Shannon: the average length 𝐿𝑁
∗  of an optimal (i.e. shortest) code satisfies 𝑯𝑿 ≤ 𝑳𝑵

∗ ≤ 𝑯𝑿 + 𝟏. 

a. Since the optimal code stores information most efficiently, its 𝑳𝑵
∗ ≈ 𝑯𝑿 bits are indeed a 

reasonable measure of the inherent information in an N-chars string in the language. 

b. Proof is based on Kraft’s inequality ∑ 𝟐−𝒍𝒘(𝒙)
𝒙 ≤ 𝟏 for instantaneous codes (proved using 

tree representation). 

c. The proof is constructive and resulted with Shannon code. However, the construction is 

not necessarily optimal (i.e. 𝑯𝑿 ≤ 𝑳𝑵
∗ < 𝑳𝑵

𝑺𝒉𝒂𝒏𝒏𝒐𝒏 ≤ 𝑯𝑿 + 𝟏  is possible), and in 

particular assigns longer words than necessary for very improbable strings. 

4. Huffman code: build decoding tree incrementally from the leaves (strings) by iteratively uniting 

the 2 least-probable available nodes, until only one node remains. 

a. Huffman code is optimal over 𝝌𝑵. 

5. Practical challenges in coding: 

a. Applying a general code for N-long strings requires 𝑶(|𝝌|𝑵) memory. 

b. Finding the optimal code requires knowledge of the distribution 𝒑. 

𝐼𝑋𝑌  𝐻𝑋|𝑌  𝐻𝑌|𝑋  

𝐻𝑋  𝐻𝑌  

𝐻𝑋,𝑌  
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Data transmission 
1. Channel: defined by 𝑄(𝑌|𝑋) = Q(output signal | input signal). 

a. In ideal channel, 𝑌 = 𝑋. 

b. Memoryless channel: iid, i.e. 𝑄(𝑌|𝑋) = Πi𝑄(𝑌𝑖|𝑋𝑖). 

i. Can be visually represented as chart from the input alphabet to the binary output. 

 

2. Shannon’s source-channel separation principle: the problem of information transmission from a 

source through a single transmitter to a single receiver can be split into 2 independent problems: 

a. Source coding – compression: encode the output of the source (independently of the 

channel). 

b. Channel coding – noise immunity: encode the information transmitted through the 

channel (independently of the source). 

In particular, the input of a channel can be assumed to be iid bits without any loss of generality. 

c. Note: in the case of multiple transmitters & receivers, there exist joint source-channel 

coding schemes which utilize the correlation between the sources for cooperative 

transmission. 

3. Capacity of channel: 𝑪 ≔ 𝐦𝐚𝐱
𝐩(𝐱)

𝑰𝑿𝒀. 

a. The channel distorts the signal 𝑋, but the distorted signal 𝑌 still carries information about 

𝑋. The capacity is the amount of this information – the reduction of uncertainty of 𝑋 

caused by knowing 𝑌 – under an optimal distribution of 𝑋. 

b. Representing amount of information that can be faithfully transmitted through the 

channel. 

4. Rate of code: 𝑅 ≔ 𝑀/𝑁 = original_length / encoded_length. 

a. Redundancy of code = 1/𝑅. 

5. Block error probability of a string 𝑚 ∈ 𝑋𝑀: 

𝑷𝑩(𝒎) = 𝑷(𝒀 ≠ 𝑿|𝒎) = ∑ 𝑄(𝑦|𝑥(𝑚)) ⋅ 𝐼(𝑑𝑒𝑐𝑜𝑑𝑒(𝑦) ≠ 𝑚)

𝑦

 

6. Channel coding theorem: information can be encoded and faithfully transmitted in rate 

arbitrarily close to the channel capacity 𝑪. 

a. More formally: for any rate 𝑅 < 𝐶 – and only for such R – the code 𝑤𝑀 (yielding encoded 

blocks of size 𝑀) can "arrange" the distribution of 𝑋 = 𝑤𝑀(𝑚) to be "nearly optimal", 

such that 𝑅𝑀 → 𝑅 and 𝑃𝐵,𝑀 → 0. 

b. In particular, we can encode input as efficiently as in Shannon’s theorem, while making 

the distribution of the encoded message 𝒑(𝒙) minimize the info loss in the channel. 

c. Proof intuition is based on the requirement #(𝑥’s)⋅#(𝑦’s per 𝑥) < #(𝑦’s) (otherwise 2 x’s 

must be mapped to the same y indistinguishably), where: 

i. #(x’s) ~2𝑀~2𝑁𝑅. 
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ii. #(y’s-per-x) ~ 2𝑁𝐻𝑌|𝑋  (𝐻𝑌|𝑋 is the info in 𝑌 beyond 𝑋, i.e. the channel's noise). 

iii. #(y’s) ~ 2𝑁𝐻𝑌 . 

Thus 𝑅 < 𝐻𝑌 − 𝐻𝑌|𝑋 = 𝐼𝑋𝑌 ≤ 𝐶. 

d. Example: in ideal channel 𝑌 ≡ 𝑋 ⇒ 𝐼𝑋𝑌 = 𝐻𝑥, thus we can have 
encoded len

original len
≈ 𝐻𝑋, as in 

Shannon’s theorem for data compression. 

7. Fano’s inequality: for any estimator �̂� yielded by 𝑋 → 𝑌 → �̂� (e.g. sending 𝑋, receiving 𝑌 and 

decoding to �̂�), the error probability 𝑃𝑒 ≔ 𝑃(�̂� ≠ 𝑋) satisfies 𝐻(𝑃𝑒) + 𝑃𝑒 log|𝜒| ≥ 𝐻(𝑋|𝑌). 

a. In particular since 𝐻(𝑃𝑒) ≤ log2|{0,1}| = 1, we have 𝑷𝒆 ≥
𝑯(𝑿|𝒀) −𝟏

𝐥𝐨𝐠|𝝌|
. 

8. Cross entropy and KL-divergence in terms of Shannon code: 

a. Shannon code essentially encodes a string 𝑚 as a word of length ≈ log 1/𝑝(𝑚). 

b. Cross entropy 𝐻𝑋(𝑝, 𝑞) = 𝐸𝑝(log 1/𝑞) is thus the expected length of 𝒒-based code used 

for 𝒑-based phenomenon. 

c. Similarly, 𝑫(𝒑||𝒒) = 𝐸𝑝[log 1/𝑞 − log 1/𝑝] is the expected extra-length of 𝒒-based 

code used for 𝒑-based phenomenon. 

d. In particular, 𝑯(𝒑, 𝒒) = 𝑯(𝒑) + 𝑫(𝒑||𝒒). 
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Statistical Physics 

Intro to thermodynamics 
1. Statistical physics deal with probabilistic microscopic modeling of complex physical systems, 

which results in deterministic macroscopic behavior due to (kind of) law of large numbers. 

2. A physical system with 𝑁 particles can be modeled by configurations space 𝜒 and observable 

functions of the configurations 𝑂(𝑥) (e.g. the energy 𝐸(𝑥)). 

a. An observable satisfies k-body interaction if 𝑂(𝑥) = ∑ 𝑂𝑖1,…,𝑖𝑘
(𝑥𝑖1

, … , 𝑥𝑖𝑘
)𝑖1…𝑖𝑘
 (K=2 or 3 

for the energy in most models, and K=1 for ideal gas model). 

3. The dynamics of a system are often modeled through the energy using Boltzmann distribution: 

𝒑𝜷(𝒙) =
𝟏

𝒁(𝜷)
𝒆−𝜷𝑬(𝒙)          (𝛽 = 1/𝑇, 𝑍(𝛽) = Σ𝑥𝑒−𝛽𝐸(𝑥) = "𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏") 

a. High-temperature limit (𝛽 → 0) ⇒ uniform distribution. 

b. Low-temperature limit (𝛽 → ∞) ⇒ 𝑥 must be a ground state – a global minimum of 𝐸. 

c. Boltzmann average of an observable 𝑂(𝑥):  〈𝑂(𝑥)〉 ≔ 𝐸𝑝𝛽
[𝑂(𝑥)]. 

4. Example – Ising spin – a single spin-½ particle (𝜒 = {±1}) with energy 𝐸(𝜎 ∈ 𝜒) ≔ −𝐵𝜎 under 

magnetic field 𝐵:  𝑝𝛽(𝜎) =
𝑒𝛽𝐵𝜎

𝑒𝛽𝐵+𝑒−𝛽𝐵,  magnetization ≔ 〈𝝈〉 =
𝑒𝛽𝐵−𝑒−𝛽𝐵

𝑒𝛽𝐵+𝑒−𝛽𝐵 = tanh 𝛽𝐵. 

5. Thermodynamic potentials: functions of 𝛽 = 1/𝑇 and 𝐸. 

a. Free energy:   𝐹(𝛽) ≔ −
1

𝛽
log 𝑍(𝛽) 

b. Free entropy:   Φ(𝛽) ≔ −𝛽𝐹(𝛽) = − log 𝑍(𝛽) 

c. Internal energy:  𝑈(𝛽) ≔
𝜕

𝜕𝛽
Φ(𝛽) = ⋯ = 〈𝑬(𝒙)〉 

d. Canonical entropy:  𝑆(𝛽) ≔ 𝛽2 𝜕

𝜕𝛽
𝐹(𝛽) = ⋯ = − ∑ 𝑝𝛽(𝑥) log 𝑝𝛽(𝑥)𝑥  

i. ⇒ Shannon entropy of Boltzmann distribution ⇒ counting the (log) possible 

system states – e.g. 𝑆 = log|𝜒| for 𝛽 → 0 (high-temp.) and log|{ground states}| 

in 𝛽 → ∞ (low-temp.). 

ii. Canonical entropy = 𝑆 = ⋯ = 𝛽(𝑈 + 𝐹) = 
1

T
(Internal Energy + Free Energy). 

6. Thermodynamic limit: 𝑁 → ∞. 

a. Free energy density:  𝑓(𝛽) ≔ lim
𝑁→∞

𝐹𝑁(𝛽)/𝑁 

b. Energy density 𝑢 & entropy density 𝑠 are defined analogously. 

c. Phase transitions occur in non-continuities of 𝑓′(𝛽) (1st order) or 𝑓′′(𝛽) (2nd order). 

d. Energy spectrum: 𝑁Δ(𝐸) ≔ number of states 𝑥 ∈ 𝜒 with 𝐸(𝑥) ∈ [𝐸, 𝐸 + Δ). 

Ferromagnets, Ising models and spin glasses 
1. Magnetic materials contain molecules with magnetic moment, which is a 3D vector tending to 

align with the magnetic field and with magnetic moments of adjacent molecules. 

2. Ising model (Ernst Ising, 1924): molecules with spins 𝜎 ∈ {±1} form a 3D cubic grid of size 

𝐿 × 𝐿 × 𝐿 with energy 𝑬({𝝈𝒊}) = − ∑ 𝝈𝒊𝝈𝒋𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕 𝒊,𝒋 − 𝑩 ∑ 𝝈𝒊𝒊 . 

3. Temperature limits: 〈𝝈𝒊〉 = {
𝐭𝐚𝐧𝐡 𝜷𝑩        𝜷/𝑩 → 𝟎
𝐭𝐚𝐧𝐡 𝑵𝜷𝑩    𝜷/𝑩 → ∞

. 

a. High-temperature limit: all the states are equally probable (under Boltzmann 

distribution). However, if we increase 𝐵 along with 𝑇 = 1/𝛽, then each spin still tends to 

align with 𝐵 as in the single particle case (see Ising spin above). 
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b. Low-temperature limit: only the ground state is allowed, which is the state of all spins 

aligned together (cooperative response). This time, if we decrease 𝐵 along with 𝑇, the 

tendency to align with 𝐵 remains stronger due to the cooperative response: switching a 

single spin requires switching the whole system against 𝐵. 

4. Average magnetization: 𝑀𝑁(𝛽, 𝐵) ≔
1

𝑁
∑ 〈𝜎𝑖〉𝑖 . 

5. Spontaneous magnetization – large-scale magnetization under tiny magnetic field: 

𝑀+(𝛽) ≔ lim
𝐵→0+

lim
𝑁→∞

𝑀𝑛(𝛽, 𝐵) 

a. Can be ≠ 0 only due to the limit 𝑁 → ∞ (a finite system under 𝐵 → 0 would have 0 

average magnetization). 

6. The model is fully solved only for dimensions 𝑑 = 1,2, though many properties of the solution are 

known also for 𝑑 = 3. 

7. In particular, there's a known phase transition 𝛽𝑐 < ∞ in the model for any 𝑑 ≥ 2, such that: 

a. Any colder system (𝛽 > 𝛽𝑐) has spontaneous magnetization 𝑀+(𝛽) = 1 (ferromagnet) – 

maximum magnetization under arbitrarily small magnetic field! 

b. Any warmer system (𝛽 < 𝛽𝑐) satisfies 𝑀+(𝛽) = 0 (paramagnet). 

8. The book describes the solution for 𝑑 = 1. 

9. In summary, from the Ising model we can infer that a physical system can have strong magnetic 

properties independently of the surrounding magnetic field, as long as its temperature is low 

enough. 

10. Currie-Weiss model: each spin interacts with all the other spins (not only adjacent ones). 

11. Edwards-Anderson model:  𝐸({𝜎𝑖}) = − ∑ 𝑱𝒊𝒋𝜎𝑖𝜎𝑗𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖,𝑗 − 𝐵 ∑ 𝜎𝑖𝑖 . 

a. Capable of modeling materials with antiferromagnetic interactions (e.g. spin glasses) – 

where energy of interaction is minimized by opposite alignment of adjacent spins (i.e. 

𝐽𝑖𝑗 < 0). 

b. Less understood than the standard Ising model due to the challenge of analysis of a 

frustrated system – where the additive components of the energy (namely the energies 

of the various interactions) cannot be simultaneously minimized, and form a complicated 

energy landscape. 
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Introduction to Combinatorial Optimization 
1. The opening example of the chapter – Minimum Spanning Tree – is covered in the Basic 

Algorithms course summary. 

2. Combinatorial optimization problem: set of instances of the problem, each consisting of set of 

configurations 𝜒 and cost function 𝐸: 𝜒 → 𝑅. 

a. Types of goals: 

i. Optimization: argmin
𝑥∈𝜒

𝐸(𝑥). 

ii. Evaluation: min
𝑥∈𝜒

𝐸(𝑥). 

iii. Decision: for a given 𝐸0, is there any 𝑥 with 𝐸(𝑥) ≤ 𝐸0? 

1. Equivalently: is there any 𝑥 ∈ 𝐿 ≔ {𝑥 ∈ 𝜒|𝐸(𝑥) ≤ 𝐸0}? 

2. Note: 𝐸 is often binary is practical problem – “is there a configuration 

which satisfies some desired conditions?”. 

b. An algorithm solves a combinatorial optimization problem if it can get any instance (𝜒, 𝐸) 

as input and return the solution in finite time. 

3. Hardness of problems: 

a. “Hardness” can be compared between problems in terms of reduction of solution (i.e. 

solving one through the solution of the other) and time complexity (e.g. existence of 

algorithm with running time polynomial in the size of an instance, usually assuming that 

calculating 𝐸(𝑥) is polynomial). 

b. Clearly decision ≤ evaluation ≤ optimization in both senses. 

c. Also decision ≥ evaluation by binary search over the range of costs (up to finite 

resolution) – just ask whether there's 𝐸(𝑥) < 𝐸0, and then repeat for higher/lower 𝐸0 

according to the answer. 

4. Examples of problems: 

a. Find the ground states of a physical system with energy 𝐸. 

i. In particular, the spin glasses problem can be represented as a MAX-CUT problem 

(with the cut being the edges between the positive and the negative spins). 

b. Error correction: decode message such that the average block error probability is 

minimized. 

c. Given a graph with weights, find a Minimum Spanning Tree. 

d. Given a graph, decide whether there's an Euler cycle (AKA Eulerian circuit – a cycle which 

passes through each edge exactly once). 

i. Possible algorithm: go over all possible paths from a certain node until a node 

appears twice or a cycle is completed. If the latter happens – return true 

(exponential time complexity). 

ii. Another possible algorithm: return true iff all the nodes have even degree (linear 

time complexity). 

e. Decide whether there's a Hamiltonian cycle (visiting each node exactly once) in a graph 

(NP hard problem). 

f. Traveling salesman; assignment (matching pairs between two groups); satisfiability; 

coloring of graphs; numbers partitioning to two sum-equal subsets; etc… 

5. Polynomial reduction: 

https://idogreenberg.neocities.org/#_Self-studied_Courses_Summaries
https://idogreenberg.neocities.org/#_Self-studied_Courses_Summaries
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a. A problem 𝐵 is polynomially reducible to 𝐴 (meaning “not harder”) if there exists a 

mapping 𝑅: 𝐵 → 𝐴 from instances of 𝐵 to instances of 𝐴 such that: 

i. For any decision instance 𝐼 ∈ 𝐵,  𝑅(𝐼) = 𝑦𝑒𝑠 ⇔ 𝐼 = 𝑦𝑒𝑠. 

ii. 𝑅(𝐼) is computable in polynomial time in |𝐼|. 

iii. |𝑅(𝐼)| is polynomial in |𝐼|. 

b. Example: the Hamiltonian cycle problem is reducible to the satisfiability problem. 

6. Complexity classes: 

a. Polynomial (P): problems for which there exists algorithm with polynomial running time. 

b. Non-deterministic polynomial (NP): problems for which there exists a non-deterministic 

algorithm – an algorithm that can run in polynomial time on non-deterministic Turing 

machine (NDTM – a machine that commits distributional computations and “accepts” iff 

any of its distributional branches accepts). 

i. Equivalently, a problem is in NP iff a suggested solution can be verified (“is 𝑥 ∈

𝐿?”) in polynomial time (short certification). 

c. NP-complete: problems in NP which are also NP-hard, i.e. any other problem in NP is 

polynomially reducible to them. 

d. Co-NP: decision problems whose complementarians are in NP (i.e. “does ∀𝑥: 𝑥 ∈ 𝐿𝑐?”). 

i. The difference from NP is derived from the asymmetric definition of NDTM to 

accept iff any of its branches returns “yes”: it can’t be configured to accept iff all 

its branches return “no”. 

ii. In particular, note that the acceptance of the NDTM is quite abstract, in the sense 

that it cannot be used to simply reverse the answer (i.e. we can’t send it to a not 

gate which just returns “yes” if the machine rejected and “no” if it accepted). 

e. Examples: 

i. NPC problems: satisfiability (Cook, 1971), 3-satisfiability (satisfiability with 

clauses of length 3), Hamiltonian cycle, traveling salesman. 

ii. Problems in NP with unknown precise classification (quite rare – most of the 

known problems have known classification…): graph isomorphism. 

iii. Problems which are not in NP: some non-decision problems, e.g. the optimization 

& evaluation variants of the traveling salesman. 

iv. Co-NP problems: any complementary of NP problem – e.g. “is there no partition 

to 2 equal-sum subsets?” or equivalently “are all partitions to 2 subsets result in 

different sums?”. 

f. Clearly 𝑷 ⊆ 𝑵𝑷 and 𝑵𝑷𝑪 ⊆ 𝑵𝑷. It is unknown whether 𝑷 = 𝑵𝑷 and 𝑵𝑷 = 𝒄𝒐 − 𝑵𝑷. 

i. It is actually often believed that there’s no polynomial algorithm for NP-hard 

problems, i.e. that 𝑃 ≠ 𝑁𝑃. In that case 𝑃 and 𝑁𝑃𝐶 are disjoint, and it was also 

proved that there exist problems in NP which are neither in P nor NPC. 

7. Continuous optimization problems are naturally out of the scope of combinatorial optimization. 

Linear programming, which deals with optimization problems of linear cost under linear 

constraints, is a common example and is briefly covered in the Basic Algorithms course summary. 

  

https://idogreenberg.neocities.org/#_Self-studied_Courses_Summaries
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Information and Probability 

Asymptotic equipartition, Sanov’s theorem and maximum entropy 

1. Asymptotic equipartition property (AEP): for iid 𝑋1 … 𝑋𝑛,   
𝟏

𝒏
𝐥𝐨𝐠

𝟏

𝒑(𝑿𝟏…𝑿𝒏)
→ 𝑯𝑿(𝒑)  in probability. 

a. Proved directly by LLN: −
1

𝑛
log 𝑝(𝑋1 … 𝑋𝑛) = −

1

𝑛
∑ log 𝑝(𝑋𝑖) → −𝐸[log 𝑝(𝑋)] = 𝐻𝑋(𝑝). 

b. The formulation of the theorem looks at probability as  a statistic – a function of the data 

– and refers to its asymptotic value. The interpretation of the consequences, however, 

looks at probability as we’re used to – “which data is likely to occur” – which in this case 

is all the 𝟐𝒏𝑯 events with probability nearly 𝟐−𝒏𝑯 (in particular nearly equal probability). 

c. In particular, for any typical set 𝑨𝝐
(𝒏)

≔ {(𝑥1 … 𝑥𝑛) ∈ 𝜒𝑛 | 2−𝑛(𝐻(𝑝)+𝜖) ≤ 𝑝(𝑥1 … 𝑥𝑛) ≤

2−𝑛(𝐻(𝑝)−𝜖)} and large enough 𝑛 ∈ 𝑁, we have 𝑷 (𝑨𝝐
(𝒏)

) > 𝟏 − 𝝐 and |𝑨𝝐
(𝒏)

| ≈ 𝟐𝒏𝑯(𝒑). 

d. Example: in 𝑛 = 106 tosses of an unfair coin 𝒑 = 𝟎. 𝟗, we expect to have nearly 𝟗 ⋅ 𝟏𝟎𝟓 

heads, although the single event 𝑿 = 𝒙𝟏 ≔ (𝟏)𝒊=𝟏
𝟏𝟎𝟔

 actually has larger probability 

𝒑(𝒙𝟏) > 𝟐−𝒏𝑯. This is possible since although its probability as a single event remains the 

largest, it remains a single event among the exploding-2𝑛 possible events. 

2. Sanov’s theorem: if {𝑋𝑖}𝑖~𝑃 are iid with empirical distribution �̂�𝑛 ≔
1

𝑛
∑ 𝛿𝑋𝑖𝑖 , and Γ is a “nice” set 

of distributions, then lim
𝑛→∞

1

𝑛
log 𝑃(�̂�𝑛 ∈ Γ) = − inf

q∈Γ
𝐷(𝑞||𝑝). 

a. “Nice” set of distributions here means inf
q∈Γ°

𝐷(𝑞||𝑝) = inf
q∈Γ̅

𝐷(𝑞||𝑝). 

b. The theorem essentially describes the decay rate of probability of rare events by 

𝑷(�̂�𝒏 ∈ 𝚪) ≈ 𝐢𝐧𝐟
𝐪∈𝚪

𝒆−𝒏𝑫(𝒒||𝒑) (for large 𝑛, with 𝐷 in units of nats). 

i. In particular, if 𝑝 ∈ Γ we just have 𝑃(�̂�𝑛 ∈ Γ) → 1, which is kind of LLN. 

c. Note: the “rarity” of a set of events is asymptotically determined only by the least rare 

event in the set, corresponding to the empirical distribution 𝑞∗. In particular, the 

conditional limit theorem states that 𝑝(𝑋1|�̂�𝑛 ∈ Γ) → 𝑞∗ in probability. 

d. Example: if 𝑿𝒊~𝑵(𝟎, 𝟏) and 𝚪 = {𝑞 | 𝑬𝒒[𝑿𝒊] ≥ 𝒕}  (𝑡 > 0), then 𝑃(�̂�𝑛 ∈ Γ) is the 

probability that the empirical distribution will be in Γ, i.e. the probability that the 

empirical mean will deviate from 0 by 𝑡 (〈𝑥〉 ≥ 𝑡), i.e. 𝑷(�̂�𝒏 ∈ 𝚪) = ∫
𝒆−𝒙𝟐/𝟐

√𝟐𝒏

∞

𝒕√𝒏
𝒅𝒙 ≈

𝒆−𝒏𝒕𝟐/𝟐 (I didn’t validate the calculation). 

e. It is claimed that Sanov’s theorem and other important results can be generalized to 

continuous spaces 𝝌 by using fields theory, and in particular the saddle point method. 

3. Maximum entropy distribution: the distribution 𝑓 which maximizes the (possibly differential) 

entropy 𝒉(𝒇) under the constraints {𝐸𝑓[𝑟𝑖(𝑥)] = 𝛼𝑖}
𝑖=1

𝑚
, is of the form 𝒇(𝒙) = 𝒆𝝀𝟎+∑ 𝝀𝒊𝒓𝒊(𝒙)𝒎

𝒊=𝟏 . 

a. Note: in lack of constraints, the entropy is maximized by the uniform distribution. 

b. Example – 𝐸[𝑋] = 0 and 𝐸[𝑋2] = 𝜎2: the entropy is maximized by 𝑓(𝑥) = 𝑒𝜆0+𝜆1𝑥+𝜆2𝑥2
 

with corresponding constants. Note that 𝑓 is of the form of a Gaussian, thus necessarily 

𝑓~𝑁(0, 𝜎2) – i.e. Gaussian has the maximum entropy given mean and variance. 

i. This can represent, for example, to the distribution of 1D velocities of molecules 

of standing gas with certain temperature. 

http://math.ubbcluj.ro/~tradu/TI/coverch3.pdf
https://blogs.princeton.edu/sas/2013/10/10/lecture-3-sanovs-theorem/
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Gibbs free energy 

1. The Boltzmann distribution of a physical system was previously written as 𝑝𝛽(𝑥) =
1

𝑍(𝛽)
𝑒−𝛽𝐸(𝑥) =

𝑒−𝛽𝐸(𝑥)−𝐹(𝛽) (normalized in terms of the partition function and the free energy, respectively). 

2. Gibbs free energy is a real functional over space of distributions: 

𝑮[𝒑] ≔ 𝑬𝒑[𝑬(𝒙)] + 𝑻 ⋅ 𝑯(𝒑) = ∑ 𝑝(𝑥)𝐸(𝑥)

𝑥

+
1

𝛽
∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥

=
1

𝛽
𝑫(𝒑||𝒑𝜷) + 𝐹(𝛽) 

a. Note: 𝑝 is the true distribution and 𝑝𝛽 is the Boltzmann distribution. 

3. Clearly, the Gibbs free energy 𝐺[𝑝] is convex, 𝒑 ≔ 𝒑𝜷 minimizes it, and 𝐺[𝑝𝛽] = 𝐹(𝛽). 

4. The Gibbs free energy is thus a concept from which the Boltzmann distribution can be derived 

(as minimization of some energy functional), and in particular it allows derivation of convenient 

approximated probability models for various systems. 

5. In particular, by writing Gibbs free energy in terms of 𝐷(𝑝||𝑝𝛽), Sanov’s theorem implies that 

given 𝑁 many physical systems, the probability of “atypical” empirical distribution 𝑝 ≠ 𝑝𝛽 is 

exponentially small: 𝑃(𝑝)~𝑒−𝑁𝐷(𝑝||𝑝𝛽) = 𝑒−𝑁𝛽(𝐺[𝑝]−𝐹(𝛽)). 

Markov Chain Monte Carlo sampling 
1. Why sampling of a configuration among 𝑁 many configurations may be challenging? 

a. Too many possible configurations. 

b. Typical (in terms of probability) configurations may be exponentially rare (in terms of 

simple counting). 

c. The probability may be known only up to a constant (e.g. Boltzmann distribution with 

unknown partition function). 

2. Markov chain (MC) is a random process {𝑋𝑖} where 𝑃(𝑋𝑖+1) depends only on 𝑋𝑖. 

a. MC is defined by its transition matrix 𝑇𝑚𝑛 ≔ 𝑃(𝑋𝑖+1 = 𝑥𝑛|𝑋𝑖 = 𝑥𝑚). 

b. MC is irreducible iff any state is reachable from any state with positive probability (i.e. 

∀𝑥, 𝑦, ∃𝑘: 𝑃(𝑋𝑖+𝑘 = 𝑦|𝑋𝑖 = 𝑥) > 0). 

c. MC is aperiodic iff reaching 𝑦 from 𝑥 is possible within any number of steps 𝑘 ≥ 𝑘0 (rather 

than, for example, only in multiplications of some period, as in the simple chain 𝑥 ↔ 𝑦 

with period 2). 

d. 𝜋(𝑥) is stationary distribution (or steady-state) iff 𝑇𝜋 = 𝜋 (i.e. ∀𝑦: 𝜋(𝑦) = ∑ 𝜋(𝑥)𝑇𝑥𝑦𝑥 ). 

i. Detailed balance condition – sufficient for stationarity: 𝜋(𝑥)𝑇𝑥𝑦 = 𝜋(𝑦)𝑇𝑦𝑥. 

e. Any irreducible aperiodic Markov chain satisfies 𝐥𝐢𝐦
𝒕→∞

𝑷(𝑿𝒕 = 𝒙) = 𝝅(𝒙) and 

〈𝒇(𝒙)〉{𝑿𝟏…𝑿𝒕} → 𝑬𝝅[𝒇] (for any 𝑓, almost surely). 

3. Markov chain Monte Carlo (MCMC) methods construct MC which is guaranteed to converge to 

a given distribution 𝝅 (possibly not normalized), in order to apply sampling from the distribution. 

4. Gibbs sampling is one such method which essentially simulates dimensionally-local transitions 

in multi-dimensional configuration space 𝝌𝒅 (e.g. the spins of 𝑑 molecules): draw a random 

𝑥(0) ∈ 𝜒𝑑 uniformly; then iteratively over 𝑡, choose a random dimension 1 ≤ 𝑖 ≤ 𝑑, and draw a 

new value for 𝑥𝑖
(𝑡)

→ 𝑥𝑖
(𝑡+1)

 according to the marginal distribution 𝑃 (𝑋𝑖
(𝑡+1)

|𝑋�̂�
(𝑡)

= 𝑥�̂�
(𝑡)

) (note 

that only the marginal distribution needs to be normalized). 

a. Heat bath algorithm: Gibbs sampling wrt Boltzmann distribution (e.g. as in the 𝑑 spins 

example). 
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b. The locality in Gibbs sampling, which determines the changes considered every iteration, 

can be generalized from “identical up to a single coordinate” (as above) to anything 

defined by a connected graph. 

Simulated annealing 
1. Any optimization problem can be represented as a statistical mechanics problem: by 

interpreting the cost of configurations 𝐸(𝑥) as energy, assuming Boltzmann distribution and 

applying the low-temperature limit, the probability of the system is guaranteed to concentrate 

around the ground states argminx 𝐸(𝑥). 

2. Since MCMC can sample from Boltzmann distribution, one may try to use it for optimization. 

3. By assigning Boltzmann distribution 𝜋(𝑥) ∝ 𝑒−𝛽𝐸(𝑥) in the stationarity equation 𝜋(𝑦) =

∑ 𝜋(𝑥)𝑇𝑥𝑦𝑥  we have 1 = ∑ 𝑒−𝛽(𝐸(𝑥)−𝐸(𝑦))𝑇𝑥𝑦𝑥 , hence ∀𝑥, 𝑦: 0 ≤ 𝑇𝑥𝑦 ≤ 𝑒−𝛽(𝐸(𝑦)−𝐸(𝑥)), which 

goes to 0 for any 𝐸(𝑥) < 𝐸(𝑦) in the low-temperature limit. 

a. In other words, the low-temperature limit enforces the energy to only gets lower 

(through zeroed transition probabilities), which prevents the Markov chain from being 

irreducible and removes the guarantee to converge to the equilibrium distribution. 

b. In particular, since the practical simulated process can only consider local transitions, it 

becomes a greedy search and thus is sensitive to local minima of 𝑬. 

i. Note: “local” is in terms of the geometry of the search, e.g. “identical up to one 

coordinate” in the case of the heat bath algorithm above. 

4. A suggested solution is to apply MCMC on Boltzmann distribution in non-zero temperature (𝛽 <

∞), which should reach the ground state 𝑥0 within expected time 𝐸[𝑇] = 1/𝑝𝛽(𝑥0). 

5. Since often lim
𝑁→∞

𝑝𝛽(𝑥0) = 0, 𝛽 must be scaled with 𝑁 to reach 𝑥0 within finite time, but then we 

reach the low-temperature limit again. To compromise between the need to avoid searching 

over the whole exponentially many sates but rather prefer low-energy states; and the need to 

avoid degenerated transitions and sensitivity to local minima – an annealing schedule is used, 

where 𝛽 accepts values alternately low (for exploration) and high (for optimization). 

a. Note: the resulted Markov chain is time-dependent (rather than homogeneous). 

6. The terminology simulated annealing comes from the process of shaping steel by alternately 

heating and cooling it. 
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Kolmogorov Complexity 
This section is based on chapter 14 in the 2nd edition of Element of Information Theory by Cover & 

Thomas. 

Definition, universality and basic properties 
1. Universal computer: a machine equivalent to Turing machine, in the sense that it can both 

implement and be implemented by a Turing machine. 

2. Kolmogorov complexity of a string 𝑥 given a universal computer 𝑈:  𝑲𝑼(𝒙) ≔ 𝐦𝐢𝐧
𝐩:𝐔(𝐩)=𝐱

𝒍(𝒑) 

a. I.e. the shortest binarily-encoded program whose output is 𝒙. 

b. Intuitively: “how complex it is to describe the string”. 

i. In particular, if 𝑥 can be constructively described in free language within 𝑛 8-bits 

characters, then its Kolmogorov complexity can’t be more than 8𝑛 bits. 

c. Terminology: Kolmogorov complexity = algorithmic complexity = descriptive complexity. 

3. Berry paradox: “the shortest number not nameable in under 10 words”. This illustrates the 

problem with not well-defined meaning of “nameable” (or “describable”). In Kolmogorov 

complexity we use the meaning “can be programmatically described”, i.e. “can be described for 

printing by a computer”. 

4. Conditioning on knowledge of the string length 𝑙(𝑥): 

a. It is unclear in the definition of 𝐾𝑈(𝑥) whether the program 𝑝 can assume to know 𝑙(𝑥). 

b. It’s actually doesn’t matter a lot, since the 𝑙(𝑥) can always be encoded in the beginning 

of 𝑝 in 𝑂(log 𝑙(𝑥)) bits (note: if 𝑥 is an integer then log 𝑙(𝑥) = log log 𝑥). 

i. Example of such a code: write the binary representation of 𝑙(𝑥) with duplicated 

digits (i.e. 0 → 00, 1 → 11), and mark the end of the encoded length with 01. 

c. When it does matter, we’ll denote by 𝑲𝑼(𝒙|𝒏) the complexity conditioned on 𝑙(𝑥). 

5. Universality of 𝐾𝑈: for any universal computers 𝐴, 𝐵,  𝑲𝑩(𝒙) ≤ 𝑲𝑨(𝒙) + 𝑪𝑨𝑩. 

a. I.e. Kolmogorov complexity is independent of the specific computer (up to a constant). 

b. Proof: just use 𝐶𝐴𝐵 bits to encode implementation of 𝐴 in 𝐵. 

c. It is actually claimed that for universal machines, 𝐶𝐴𝐵 ≡ 𝐶, accordingly re-denoting 

𝐾(𝑥) = 𝐾𝑈(𝑥). Maybe I don’t understand how exactly a universal computer is defined. 

6. Bounds on 𝐾(𝑥): 

a. Upper bound:  𝑲(𝒙) ≤ 𝒍(𝒙) + 𝒄  (proof: just print 𝑥 hard-coded). 

i. Note: the constants (both in the upper bound and in the conversion between 

universal computers) may be very large, so the whole theory is mainly relevant 

for either huge strings or conceptual purposes. 

ii. Note: 2 log 𝑙(𝑥) may be added to the upper bound if it’s not conditional on the 

length 𝑙(𝑥) (see “conditioning on knowledge of…” above). 

b. Lower bound: 

i. |{𝒙 ∈ {𝟎, 𝟏}∗: 𝑲(𝒙) < 𝒌}| < 𝟐𝒌 (at most 2𝑘 strings can be encoded in 𝑘 bits…). 

ii. For iid 𝑋1 … 𝑋𝑛~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1/2), 𝑷(𝑲(𝑿𝟏 … 𝑿𝒏|𝒏) < 𝒏 − 𝒌) < 𝟐−𝒌. 

1. I.e. large compression is rare. 

7. Algorithmically random sequence:  𝐾(𝑥1 … 𝑥𝑛|𝑛) ≥ 𝑛. 

a. Note: by counting argument, for any 𝑛 there exists at least one such sequence. 

8. Incompressible infinite sequence: lim
n→∞

𝐾(𝑥1…𝑥𝑛|𝑛)

𝑛
= 1. 
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a. For any incompressible sequence, 
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 →

1

2
 (“strong law of large numbers”). 

i. I.e. any incompressible sequence has similar proportion of 0s and 1s. 

b. In general, incompressible sequence satisfies all the computable statistical tests for 

randomness, otherwise the statistical structure could be exploited to describe it shortly. 

9. Examples: 

a. Sequence of 01s:   𝐾(0101 … 01|𝑛) = 𝑐 

b. Digits of 𝜋:     𝐾(𝜋1 … 𝜋𝑛|𝑛) = 𝑐 

c. An integer 𝑛 ∈ 𝑁:  𝐾(𝑛|𝑙(𝑛)) ≤ log 𝑛 + 𝑐  (just hard-code the binary repr.) 

d. Imbalanced binary sequence:  𝐾(𝑥1 … 𝑥𝑛|𝑛) ≤ 𝑛𝐻0 +
1

2
log 𝑛 + 𝑐 

i. 𝐻0 ≔ −�̅� log �̅� − (1 − �̅�) log(1 − �̅�)  (�̅� ≔ ∑𝑥𝑖/𝑛 ) 

ii. The proof is based on the constructive idea “generate all sequences with 𝑘 = ∑𝑥𝑖 

ones, then peak the 𝑖𝑡ℎ sequence”. 

iii. For �̅� = 1/2 we have 𝐻0 = 1, yielding the global upper bound 𝑂(𝑙(𝑥)) = 𝑂(𝑛). 

iv. The bound gets closer to 0 as �̅� gets more distant from 1/2. 

10. Kolmogorov complexity and entropy: 

a. 𝑬 [
𝟏

𝒏
𝑲(𝑿𝒏)] → 𝑯(𝑿) for iid {𝑋𝑖} above finite alphabet. 

b. 
𝟏

𝒏
𝑲(𝑿𝟏 … 𝑿𝒏|𝒏) → −𝜽 𝐥𝐨𝐠 𝜽 − (𝟏 − 𝜽) 𝐥𝐨𝐠(𝟏 − 𝜽) in probability for iid 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃). 

i. Note: the two properties are taken from two different subsections, and it is 

unclear whether the differences in setup (finite alphabet vs. Bernoulli) and 

notation (𝑋𝑛 vs. 𝑋1 … 𝑋𝑛) are meaningful. 

Computability of Kolmogorov complexity and Chaitin’s number 

1. Example (non-triviality of Kolmogorov complexity evaluation): the binary expansion of √2 − 1 for 

𝑛 = 100 bits, for example, would pass most conventional tests for randomness, even though it 

can be described very shortly. 

2. Kolmogorov complexity of a string 𝒙 is not computable, since computing it (or even validating it) 

would require going over all programs (or all shorter programs for validation) and tell whether 

they return 𝑥 or not – which would in particular find out whether they stop or not, which would 

solve the halting problem. 

a. Note: unlike finding the shortest-running-time program, to find the shortest-encoded 

program (which may have longer running time than other valid programs), we can’t just 

go over many programs in parallel until any of them successfully halts. 

3. Chaitin’s number:  𝛀 ≔ ∑ 𝟐−𝒍(𝒑)
𝒑:𝑼(𝒑) 𝒉𝒂𝒍𝒕𝒔  

a. Note: the encoded programs that halt are a prefix-free set (none of them is a prefix of any 

other), hence they satisfy Kraft inequality, thus 0 ≤ Ω ≤ 1. 

b. By drawing a random program by sequentially drawing its bits as 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) until a 

valid program is yielded, we have 𝛀 = 𝑷(𝑼(𝒑) 𝒉𝒂𝒍𝒕𝒔). 

c. 𝛀 is non-computable, since computing it would require solving the halting problem. 

d. It can be shown that knowing Ω (in resolution of 𝑛 bits) would allow us to decide the 

truth of any provable mathematical theorem (phraseable in less than 𝑛 bits). 

i. Example: by coding a program that goes over all integer quartettes 

{(𝑛, 𝑎, 𝑏, 𝑐) ∈ 𝑁4|𝑛 ≥ 3} until 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛, and testing whether it halts or not, 

the truth of Fermat’s last theorem can be decided. 
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e. Ω is algorithmically random, in the sense that its binary representation up to 𝑛 bits can’t 

be compressed by more than a constant (∃𝑐, ∀𝑛: 𝐾(𝜔1 … 𝜔𝑛) ≥ 𝑛 − 𝑐). 

Universal probability, Occam’s razor and minimum description length principle 

1. Universal probability of a string: 𝑷𝑼(𝒙) ≔ ∑ 𝟐−𝒍(𝒑)
𝒑:𝑼(𝒑)=𝒙  

a. 𝑷𝑼(𝒙) = 𝑷(𝑼(𝒑) = 𝒙), i.e. the universal probability is the probability that a program 𝒑 

which is randomly drawn as a sequence of Bernoulli(1/2) bits will print 𝒙. 

b. The universal probability is independent of the computer up to a constant multiplication. 

2. Kolmogorov complexity and universal probability: 𝑷𝑼(𝒙) ≈ 𝟐−𝑲(𝒙). 

a. More precisely 2−𝐾(𝑥) ≤ 𝑃𝑈(𝑥) ≤ 𝑐2−𝐾(𝑥)  (or 𝐾(𝑥) − 𝑐 ≤ log
1

𝑃𝑈(𝑥)
≤ 𝐾(𝑥)). 

b. Note: 𝐥𝐨𝐠 𝟏/𝒑𝑼(𝒙) ≈ 𝑲(𝒙) is somewhat analog to 𝑬[𝐥𝐨𝐠 𝟏/𝒑] = 𝑯(𝑿). 

c. In particular, for a standard textual string 𝑥, the probability ≈ 2−𝐾(𝑥) of a randomly drawn 

program to print 𝑥 is significantly larger than the probability 2−𝑙(𝑥) of a randomly drawn 

string to be 𝑥. 

i. I.e. we should sit the monkey in front of a terminal, not a word processor. 

3. Occam’s razor principle: among explanations consistent with the data, the simplest should be 

chosen. 

a. Example: general relativity is simpler than a [Newtonian theory patched to fit the 20th 

century observations]. 

b. Kolmogorov complexity gives a natural measure of simplicity. 

c. Note: choosing explanation with small Kolmogorov complexity is similar to Bayesian 

approach with the universal probability as a prior. 

4. Example: will the sun rise tomorrow, given that it has risen in all 𝑛 days of known history? 

a. The universal probability of a sequence beginning with 𝑛 + 1 1s is ∑ 𝑝(1𝑛1𝑦) ≈𝑦

𝑝(1∞) = 𝑐 > 0. Similarly, ∑ 𝑝(1𝑛0𝑦) ≈ 𝑝(1𝑛0) ≈ 2− log 𝑛 = 1/𝑛𝑦  (since the program 

must describe 𝑛, which in general takes ~ log 𝑛 bits), hence the probability that the sun 

won’t rise tomorrow is ≈
1/𝑛

𝑐+1/𝑛
≈ 1/𝑐𝑛 . 

b. Laplace got similar result with Bayesian approach, assuming the rising of the sun is 

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃) with a uniform prior: 𝑃(𝑋𝑛+1|𝑋1 = 1 … 𝑋𝑛 = 1) =
𝑃(𝑋1=1…𝑋𝑛+1=1)

𝑃(𝑋1=1…𝑋𝑛=1)
=

∫ 𝜃𝑛+1𝑑𝜃
1

0

∫ 𝜃𝑛𝑑𝜃
1

0

=
𝑛+1

𝑛+2
, i.e. the probability that the sun won’t rise tomorrow is again ≈ 1/𝑛. 

5. Minimum description length principle: 

a. Goal: fit data with a probability model. 

b. Empirical distribution: best possible fit (and a brute overfit): 𝑓(𝑥) = ∑
1

𝑛
𝛿(𝑥𝑖)𝑛

𝑖=1 . 

i. Kernel density estimation: smoothing of the empirical fit. 

c. Maximum likelihood among a parametric family of distributions: argmax
θ

𝑝𝜃({𝑥1 … 𝑥𝑛}). 

d. Kolmogorov-complexity-based fit:  𝒑 ≔ 𝐚𝐫𝐠𝐦𝐢𝐧
𝐩∈𝐩𝐝𝐟𝐬

𝑲(𝒑) + 𝐥𝐨𝐠
𝟏

𝒑({𝒙𝟏…𝒙𝒏})
 

i. It’s kind of Bayesian inference with the universal prior 𝑃(𝑝) ≔ 𝑃𝑈(𝑝) ≈ 2−𝐾(𝑝). 

ii. It also follows Occam’s Razor through the minimum description length principle 

– it’s the shortest way to sequentially describe the distribution 𝑝 and then the 

data {𝑥1 … 𝑥𝑛} using 𝑝-based Shannon’s code.  
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A Sample of Applications of Information Theory in Machine Learning 
1. This section is mostly based on this must-know information theory concepts in AI. 

2. Decision trees construction: splitting nodes are often chosen by the criterion of minimum post-

split entropy – since the data is wished to be as homogeneous (non-random) as possible after the 

split. 

3. Cross entropy is a common loss function in classification problems: the classifier (e.g. a neural 

network) returns 0 ≤ 𝑦 ≤ 1 which is interpreted as 𝑦 = 𝑃(𝑥 ∈ 𝐶𝑙𝑎𝑠𝑠1), and the loss is 𝐿 =

{
log

1

𝑦
            𝑥 ∈ 𝐶1

log (
1

1−𝑦
)   𝑥 ∉ 𝐶1

. 

4. Feature selection: independent features can increase the information-per-feature (or per degree 

of freedom, or per model complexity), which allows better exploitation of the information (and in 

particular reduces overfitting). While correlation is only capable of capturing linear relationship, 

mutual information can truly guarantee small dependence between different features. 

5. The inferential connections between variables in Bayesian networks are often based on their 

mutual information. 

6. Independent component analysis (ICA) attempts to decompose a signal into a sum of as 

independent components as possible, often through minimization of their mutual information. 

7. Variational autoencoders (VAE) are a variant of autoencoders, which is intended to find efficient 

(usually in terms of compression) representation of data by learning to predict the data (as 

output) from itself (as input), where the architecture of the model (usually neural network) 

enforces passage through a restricted (usually just smaller) layer of memory: 𝑋 → 𝑌𝑠𝑚𝑎𝑙𝑙 → �̂�. 

Variational autoencoders use KL-divergence as (a main component in) their loss function. 

8. This source briefly describes further applications such as bottleneck research in deep neural 

networks and rare events prediction. 

 

https://towardsdatascience.com/must-know-information-theory-concepts-in-deep-learning-ai-e54a5da9769d
https://www.quora.com/What-is-the-relationship-between-machine-learning-and-information-theory

