Random Graphs and Hypergraphs

Based on the course Random Graphs and Hypergraphs (049014) by Omer Bobrowski, Technion, 2021.

The main source for the course is *Introduction to Random Graphs* by Frieze & Karonski.

The summary covers the first 8 weeks of the course, focusing on random graphs under the simple model of edges drawn independently according to Bernoulli(p). The (un-summarized) rest of the course focused on random *hyper*graphs (i.e. with hyper-edges, which can connect more than 2 nodes together).

Summarized by Ido Greenberg in 2021.

Contents

Introduction	2
Basic tools	2
Random graph process & thresholds	3
Vertex degrees	3
Connectivity	4
Local limits	4
Cycles	5
Other topics	6

Notations:

- $G = (V, E), e_G = |E|, e_v = |V|$
- $[n] = \{1, ..., n\}$
- $a_n \ll b_n \Leftrightarrow a_n = o(b_n), \quad \gg \Leftrightarrow \omega, \quad \sim \Leftrightarrow \Theta, \quad \approx \Leftrightarrow a_n/b_n \to 1$
- w.h.p = with high probability (asymptotically)

2021

Introduction

- 1. Default scope: undirected & unweighted graphs.
- 2. Random graphs models:
 - a. $G \sim G(n, p)$: *n* vertices; edges randomly placed independently w.p. *p*.
 - i. Ignores structures in the graph (e.g. if (x,y),(y,z) are edges, it often should increase the probability of the edge (x,z)).
 - ii. Probability of a specific graph is $P(G) = p^{|E|}(1-p)^{N-|E|}$ $(N \coloneqq \binom{n}{2})$.
 - b. G~G(n, M): M random edges (equivalently: G(n, p) conditioned on |E| = M).
 i. Asymptotically equivalent to G(n, p) with p = M/N.
 - c. $G \sim G(n, d)$ random d-regular graph: uniform dist. over n-sized d-regular graphs.
 - d. $G \sim G(n, r) qeometric rand. graph: nodes are i.i.d in <math>[0,1]^d$, connected if distance $\leq r$.
 - e. *Preferential attachment* model: generate by induction iteratively add a new node and connect it to existing nodes with probabilities proportional to their current degrees.
 - i. Respects the structure of Hubs (well-connected nodes get more new edges).
- 3. The course focuses on the simple G(n, p), despite its lack of structure.
- 4. Applications examples:
 - a. Network analysis, e.g. epidemic spread.
 - b. The probabilistic methods: proving existence of objects based on their probability (in a suitable probabilistic model) being positive. For example: existence of certain colorings in graphs.
- 5. Extended graph models:
 - a. **Hypergraph**: $E \subset 2^V$ rather than V^2 (hyper-edges are subsets of nodes rather than pairs).
 - i. Simplicial Complex: hypergraph that is closed to inclusion, i.e. $\forall e \in E$, all the subsets of e are also in E.
 - b. Applications examples:
 - i. High-dimensional networks (connections are more general than pairs).
 - ii. Triangulation connections come in triplets.

Basic tools

6. Some bounds:

a.
$$1+x \le e^x$$

b.
$$(1-\epsilon)^n \approx e^{-\epsilon n}$$
 $(\epsilon \to 0, n\epsilon^2 \to 0)$
c. $\binom{n}{k} \approx \frac{n^k}{k!}$ $(k = o(\sqrt{n}))$

d.
$$\binom{n}{k} \leq \left(\frac{en}{k}\right)^{\kappa}$$

- 7. Probabilistic tools:
 - a. *Markov inequality* (1st moment argument): $X \ge 0 \Rightarrow P(X \ge a) \le \mu/a$ i. For integer X and $a \coloneqq 1$: $P(X > 0) \le \mu$
 - b. **Chebyshev inequality** (2nd moment argument): $\forall a > 0$: $P(|X \mu| \ge a) \le \sigma^2/a^2$
 - i. Private case for $X \ge 0$: $P(X = 0) \le \frac{\sigma^2}{\mu^2}$
 - c. $Binom(n, \gamma/n) \rightarrow^{D} Poisson(\gamma)$ (convergence in distribution).
- 8. *Method of Moments*: $[\forall k: EX_n^k \to EX^k] \Rightarrow [X_n \to D^k X]$ (assuming all moments are finite).

9. Factorial moment: $E((S_n)_k) \coloneqq E[S_n(S_n-1) \dots (S_n-k+1)]$ a. $E((S_n)_k) \to \lambda^k \Rightarrow S_n \to^D Poisson(\lambda).$

Random graph process & thresholds

- 10. Random graph process: $T_1 \dots T_N \sim unif[0,1]$ i.i.d $(N \coloneqq \binom{n}{2})$. $E_t \coloneqq \{e \in [N]: T_e \leq t\}$.
 - a. Adding edges as t increases; $\forall t \in [0,1]$: $G_t \sim G(n,t)$.
- 11. A set A of graphs is *monotone increasing* if $G \in A \Rightarrow G + \{e\} \in A$ (adding edges keeps us in the set; e.g. "all graphs with min degree 5"). A is also termed property.
 - a. Monotone decreasing is defined similarly.
 - b. Claim: A is increasing & $t_1 < t_2 \rightarrow P_{t_1}(A) \le P_{t_2}(A)$. (since $G_{t_1} \subset G_{t_2}$)

12.
$$p^*(n)$$
 is a **threshold** for A if: $\lim_{n \to \infty} P_t(A) = \begin{cases} 0 & i \neq 0 \\ 1 & i \neq 0 \end{cases}$

- n) is a threshold for A if $\lim_{n} r_t(A) = \begin{cases} 1 \text{ if } t \gg p^* \\ 0 \text{ if } t \le (1-\epsilon)p^* \\ 1 \text{ if } t \ge (1+\epsilon)p^* \end{cases}$
- b. Intuition: a threshold on *p* beyond which, the RG suddenly satisfies *A*'s condition.
- c. Example: $A = \{ \text{graphs with at least one edge} \} \Rightarrow \# \text{edges} \sim Binom\left(\binom{n}{2}, p \right) \Rightarrow$ $P(no \ edges) \approx (1-p)^{n^2/2} \approx e^{-pn^2/2} \Rightarrow p^* = n^{-2}$ is a threshold.
- d. Example: A={graphs with isolated node} (decreasing) $\Rightarrow p^* = \frac{\log n}{n}$ (sharp thresh).

13. Theorem: every nontrivial monotone increasing property ($\phi \notin A$) has a threshold.

- a. Proof: $P_p(A)$ increases polynomially in p from 0 to 1, so $\exists p^*: P_{p^*}(A) = 0.5$, and we can show that it satisfies the threshold property.
- b. Kalai & Friedgut: (almost) every nontrivial A has a sharp threshold.

Vertex degrees

- 14. Denote $X_d \coloneqq$ number of vertices with degree d.
- 15. Example **non-isolated nodes (***X***₀)**:

a.
$$E[X_0] = \sum_{v \in V} (1-p)^{n-1} = n(1-p)^{n-1} \approx ne^{-np}.$$

b. Theorem:

i.
$$np = \log n - \omega(n)$$
 $\rightarrow \frac{X_0 - EX_0}{\sqrt{Var(X_0)}} \rightarrow^D N(0,1)$
ii. $np = \log n + c$ $\rightarrow X_0 \rightarrow^D Poisson(e^{-c})$
iii. $np = \log n + \omega(n)$ $\rightarrow X_0 \rightarrow^D 0$

16. While $X_0(p)$ decreases with p from n to 0, $X_d(p)$ isn't monotone, since $X_d(0) = X_d(1) \approx 0$.

17. Behavior of
$$X_d$$
: $E[X_d] = n \binom{n-1}{d} (1-p)^{n-d-1} p^d \approx \frac{n(np)^d}{d!} e^{-np}$. In particular:

a.
$$np \ll n^{-1/d}$$

b. $np = cn^{-1/d}$
c. $n^{-1/d} \ll np \le \log n + d \log^2 n + \omega(n) \Rightarrow EX_d \to \infty, \quad \frac{X_d \to 0}{\sqrt{Var(X_D)}} \to N(0,1)$
d. $np = \log n + d \log^2 n + c$
e. $np = \log n + d \log^2 n + \omega(n)$
 $\Rightarrow EX_d \to \frac{e^{-c}}{d!}, \quad X_d \to Poisson$
 $\Rightarrow EX_d \to \frac{e^{-c}}{d!}, \quad X_d \to Poisson$
 $\Rightarrow EX_d \to 0, \quad X_d \to 0 \quad (log^2 = loglog)$

- 18. Min/max degree ($\delta(G), \Delta(G)$):
 - a. Note: $E[d_v] = (n-1)p \approx np$.
 - b. Theorem:
 - i. $np = c \in (0, \infty)$ $\rightarrow \Delta(G) \approx \log n / \log^2 n$
 - ii. $np \gg \log n$ $\rightarrow \delta(G) \approx \Delta(G) \approx np$
 - 1. The proof uses Chernoff inequality.
 - 2. Convergence in probability: $\frac{\delta(G)}{np}, \frac{\delta(G)}{np} \rightarrow^{P} 1$

Connectivity

19. What is the smallest p s.t. G(n, p) is connected?

- a. If $np = \log n \omega(n)$ then $X_0 > 0$ w.h.p $\rightarrow \exists$ isolated nodes \rightarrow disconnected.
 - i. Otherwise → no isolated nodes. Non-trivially, in this case we also have connectivity w.h.p. That is, dis-connectivity comes only form isolated nodes.

(1

20. Theorem (Erdos & Renxi, 1959): $\lim_{n} P(connected) =$

$$\begin{cases} e^{-e^{-c}} & np = \log n + c \\ 0 & np = \log n - \omega(n) \end{cases}$$

 $np = \log n + \omega(n)$

- a. Also if $np = \log n + c$: $n_{components} \approx 1 + X_0 \rightarrow Poisson(e^{-c})$ (i.e. 1 large component + X_0 isolated nodes).
- b. The proof uses Cayley's formula for the number of spanning trees on k nodes (k^{k-2}), and calculates the probability of each spanning tree (which is essentially a connected graph).
- 21. Theorem connected component size: for $np = c \in (0, \infty)$ (i.e. the "disconnected limit"):
 - a. If c < 1: all connected components are of size $O(\log n)$.
 - b. If c = 1: largest component is $\approx n^{2/3}$.
 - c. If c > 1: \exists a component of $\approx \left(1 \frac{x^*}{c}\right)n$ nodes, and the other components are $O(\log n)$.
 - i. $xe^{-x} = ce^{-c}$ has one solution x = c and one x < 1. x^* is the smaller solution.
 - ii. The proof shows that w.h.p, no components exist of size $[a \log n, bn]$; and that only $\frac{x^*}{c}n$ nodes reside on smaller components; thus all the other nodes are in larger components.
 - iii. Then the proof shows that this "giant" component is unique. Note that if bn > 0.5n, the uniqueness is trivial since there are only n nodes. In general, we can assume multiple giant components at $c_1 = c \epsilon > 1$, and show that when adding components to move from c_1 to c, then w.h.p we connect all the giant components together.

Local limits

- 22. What do we see when we explore a random graph from an arbitrary node v, up to a distance r?
- 23. **Pointed graph**: (G, v^*) (for some $v^* \in V$); **Neighborhood** $[(G, v^*)]_r$: all nodes of distance $\leq r$ from v^* , along with the edges that connect them to v^* .
- 24. *Plane tree*: labeling the nodes, subtrees & neighborhoods in a tree according to the corresponding paths from the root.

- a. <u>Galton-Watson Tree</u>: a plane tree with a distribution $\pi = (\pi_0, \pi_1, ...)$, s.t. for each node in the tree, its number of children is drawn according to π . It is required that $\sum_{i=1}^{\infty} \pi_i = 1$ and $\pi_1 \leq 1$ ($\pi_1 = 1$ is the trivial case of an infinite path graph).
- b. Theorem finiteness of GW trees: let $T \sim GW_{\pi}$, and denote $z_0 := \min\{z \mid \sum_{k=0}^{\infty} \pi_k z^k =$ $z\} \leq 1$. Then $P(|T| < \infty) = z_0$ and $[z_0 < 1 \iff E[\pi] = \sum_{k=0}^{\infty} k\pi_k > 1]$.
- i. The last claim relies on a straightforward function exploration of $\sum_{k=0}^{\infty} \pi_k z^k z$. 25. Graph isomorphism $G_1 \cong G_2$: a bijection (one-to-one & onto) $f: V_1 \to V_2$ with $(u, v) \in E_1 \Leftrightarrow$ $(f(u), f(v)) \in E_2$. That's essentially a relabeling of the nodes.
 - a. **Pointed-graph isomorphism**: also require $f(v_1^*) = v_2^*$.
- 26. Theorem *local limit* of a pointed graph: let $G \sim G(n, p)$ with np = c. Then the *r*-neighborhood satisfies $[(\mathbf{G}, \mathbf{v}^*)]_r \xrightarrow{\mathbf{n} \to \infty} \mathbf{G} \mathbf{W}_{\pi}$, where $\pi = Poisson(c)$.
 - a. Note that $E[\pi] = c \le 1$, thus $P(|T| < \infty) = 1$ and $[(G, v^*)]_r$ is indeed finite.
 - b. The formal way to phrase the limit is through graph isomorphism for $T \sim GW_{\pi}$ and $T^* =$ (T, u^*) : $\forall t \in trees$: $P([(G, v^*)]_r \cong t) = P([T^*] \cong t)$.
 - c. Conclusion: w.h.p, $[(G, v^*)]_r$ is a tree $(\sum_{t \in trees} P([(G, v^*)]_r \cong t) \to 1)$.

Cycles

- 27. Let G and denote by γ_k the **number of** Hamiltonian cycles of size k within G.
 - a. Note: a Hamiltonian cycle forbids repetition of nodes, i.e. |E| = |V| = k.
 - b. Example: in the clique K_n , there are $\binom{n}{k}$ subsets of k nodes, each with k! different cycles up to 2 reflections and k cyclic shifts, thus $\gamma_k = \binom{n}{k} (k-1)!/2$.

28. **Theorem**: let
$$G \sim G(n, p)$$
 with $np = c$. Then $\gamma_k \xrightarrow{n \to \infty} Poisson(c^k/2k)$ in distribution.

- a. Total cycles: $\Gamma \coloneqq \sum_{k=3}^{n} \gamma_k$. i. Claim: $E[\Gamma] \xrightarrow{n \to \infty} \Lambda_c \coloneqq \frac{1}{2} \left(\log \frac{1}{1-c} c c^2/2 \right)$ (assuming c < 1).
 - ii. In fact, $\Gamma \rightarrow Poisson(\Lambda_c)$ (was not proved).

29. Theorem (*Erdos-Renyi*, 1960) – probability of having no cycles: let $G \sim G(n, p)$ with np = c. Then

$$\lim_{n \to \infty} P(G \text{ is acyclic}) = \begin{cases} \sqrt{1 - ce^{\frac{c}{2} + \frac{c^2}{4}}} & c < 1 \\ 0 & c \ge 1 \end{cases}$$

30. Theorem (Hamiltonian cycle of size k = n): let $G \sim G(n, p)$, $np = \log n + \log^2 n + c(n)$. Then $\begin{pmatrix} 1 & c(n) \rightarrow \infty \end{pmatrix}$

$$\lim_{n \to \infty} P(\gamma_n = 1) = \lim_{n \to \infty} P(\delta(G) \ge 2) = \begin{cases} 1 & c(n) \to c \\ e^{-e^{-c}} & c(n) \to c \in (0, \infty) \\ 0 & c(n) \to -\infty \end{cases}$$

- a. Note that necessarily $\gamma_n \in \{0,1\}$, and that $\gamma_n = 1$ requires connectivity (hence $np \ge \log n$) and min degree $\delta \ge 2$.
- b. The ranges don't cover the whole R possibly a mistake.
- c. Only the first case $(c(n) \rightarrow \infty)$ was proven.

Other topics

- 31. *Diameter* = longest distance in the graph.
- 32. Claims:
 - a. $np \gg \log n \rightarrow diam(G) \approx \log n / \log np$.
 - b. $np = [n \log n^2 \log c]^{1/d} \rightarrow diam(G)$ decreases with c from d + 1 to d.
- 33. *Independent set*: a subset of nodes that contains no edges. $\alpha(G) \coloneqq ||$ argest independent set|.
- 34. Claim: $np = c \cdot n \rightarrow \alpha(G) \approx 2 \log_{1/(1-p)} n$.
 - a. **Chromatic number** $(\chi(G))$: minimal number of colors that allows coloring s.t. neighbors always have different colors.
 - b. **Corollary**: $\chi(G) \approx \frac{n}{2 \log_{1/(1-p)} n}$.