Topics in Statistical Learning Theory

Summarized by Ido Greenberg in 2021, based on various sources as mentioned below.

Contents

Background	1
Symmetrization	1
Rademacher Complexity	
Chaining	2
Martingales	4

Background

PAC-learning & VC-dimension: see a brief summary here (P.13-14).

Glivenko-Cantelli Theorem: see here (P.7). Note that the proof relies on symmetrization argument.

Symmetrization

• **Symmetrization lemma**: let ϕ convex, E[Z] = 0, $\epsilon \sim unif\{\pm 1\}$ independently of Z, then:

$$E\phi(Z) \leq E\phi(2\epsilon Z)$$

- \circ I guess it's called symmetrization because ϵZ has a symmetric distribution.
- That's a useful technique for proving various inequalities in statistics (e.g. bounding Orlicz norm of a sum using Orlicz norms of the elements; and VC-dimension bounds [1,2]).
- Examples:

$$\circ \quad \phi(Z) = Z \quad \clubsuit \quad 0 \le 0$$

• The proof relies on 2 independent copies of Z, Jensen inequality and convexity of ϕ :

$$E_{Z_1}\phi(Z_1) = E_{Z_1}\phi(Z_1 - E_{Z_2}Z_2) \le E_{Z_1}E_{Z_2}\phi(Z_1 - Z_2) = E_{\epsilon}E_{Z_1}E_{Z_2}\phi(\epsilon(Z_1 - Z_2))$$

$$\le E_{\epsilon}E_{Z_1}E_{Z_2}\frac{1}{2}(\phi(2\epsilon Z_1) + \phi(2\epsilon Z_2)) = E\phi(2\epsilon Z)$$

• Generalized *Symmetrization Theorem*: for i.i.d $\{X_i\}, \epsilon_i \sim unif\{\pm 1\}$, and global $C_{1,2}$:

$$E\sup_{\mathbf{f}\in\mathbf{F}}\left|\frac{1}{N}\sum_{i=1}^{N}f(X_{i})-Ef\right| \leq C_{1}E\sup_{\mathbf{f}\in\mathbf{F}}\left|\frac{1}{N}\sum_{i=1}^{N}\epsilon_{i}f(X_{i})\right| \leq C_{2}E\sup_{\mathbf{f}\in\mathbf{F}}\left|\frac{1}{N}\sum_{i=1}^{N}f(X_{i})-Ef\right| + \frac{\sup_{\mathbf{f}\in\mathbf{F}}|Ef|}{\sqrt{N}}$$

• I.e. the expected deviation $|\overline{f(X)} - Ef|$ remains similar after symmetrization $|\overline{\epsilon f(X)}|$.

• Another variant of the symmetrization theorem bounds the probability $Pr(|\overline{f(X)} - Ef| > \rho)$.

Rademacher Complexity

- Main source: lecture notes of Clayton Scott by Deng & Moon
- VC-dimension quantifies the expressiveness of a class of hypotheses of binary functions. Rademacher generalizes this notion for real-valued functions.
- Definition: $\widetilde{R}_{Z}(G) \coloneqq E_{\sigma} \left[\sup_{g \in G} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(Z_{i}) \right], R_{n}(G) \coloneqq E_{Z}[\widetilde{R}_{Z}(G)]$
 - o These are *Empirical Rademacher Complexity* and *Rademacher Complexity*, respectively.
 - *G* is a class of hypotheses (bounded functions); σ_i are iid $unif\{\pm 1\}$; *Z* are data samples.
- Interpretations:
 - *G* can fit different sign combinations of σ (to achieve large value, $g(Z_i)$ has to be very positive if $\sigma_i = 1$ and very negative if -1).
 - *G* can fit different directions of the vector σ .
- **Rademacher complexity bound**: W.p. 1δ :

$$\forall g \in G: \quad E[g(Z)] \leq \frac{1}{n} \sum_{i=1}^{n} g(Z_i) + 2R_n(G) + B_{\sqrt{\frac{\log 1/\delta}{2n}}}$$

- \circ Z_i are iid data samples (the probability 1δ is wrt them); *B* is the uniform bound on *G*.
- The proof relies on a symmetrization argument.
- \circ Interpretation: the expected loss is probably close to the empirical loss, up to the Rademacher complexity; if *G* is very expressive, we may choose *g* that overfits, but then the small empirical error does not necessarily represent the expected error.
- Similar versions exist for \tilde{R}_Z (instead of R_n) and for two-sided bound.

Chaining

- Main sources: David Pollard, Yale; Talagrand; Rakhlin
- Stochastic process: $X = \{X_t\}_{t \in T}$
 - Example: $Z \sim N(0, I_d), T = R^d, X_t = Z^{\mathsf{T}}t.$
- Process control:
 - Relies on assumptions about the increments of the process, e.g. $||X_s X_t|| \le C||s t||$ or $P\{||X_s - X_t|| \ge \eta ||s - t||\} \le \beta(\eta)$.
 - E.g. sub-Gaussian process: $\forall \lambda \in R, \forall t, s \in T: E[e^{\lambda(X_t X_s)}] \le e^{\frac{\lambda^2 ||t-s||^2}{2}}$
 - Equivalent definition: $\forall t, s \in T$: $X_t X_s \sim subG(||t s||^2)$
 - For convenience, the process is usually assumed to be centered $EX_t = 0$.
 - Aims to find global tail-bounds, e.g. on $\sup_{t \in T} |X_t|$ or $OSC(\delta, X, T) \coloneqq \sup_{|s-t| < \delta} |X_s X_t|$ (oscillation).
 - Note: for a symmetric process $E \sup |X_t X_s| = 2E \sup X_t$ so both goals are essentially the same.
 - Also note that $\forall t_0: E \sup X_t = E \sup X_t X_{t_0}$ (since $EX_{t_0} = 0$), which is sometimes more convenient to work with.
- A common approach to prove global bounds over an infinite set *T*:

- (1) Prove for finite subsets $T_n \subset T$; (2) take the limit $n \to \infty$ for a countable subset that is dense in T; (3) generalize the bound for T itself.
- 0 For (1) to be effective, the bound must not diverge when $n \to \infty$. For example, naively taking the union bound $P\{\max|X_t| > \eta\} \le \sum P\{X_t > \eta\}$ would usually diverge with *n*. However, the union bound is clearly sub-optimal for positively-correlated variables.
- Chaining:
 - We would like to find a subset $T_1 \subset T$ that is rather uncorrelated (hence a union bound 0 is effective) and that covers T reasonably, so that a good mapping $\pi_1: T \to T_1$ would allow us to bound $X_t - X_{t_0} = (X_t - X_{\pi_1(t)}) + (X_{\pi_1(t)} - X_{t_0})$ effectively.
 - More generally, we consider the subsets $\{t_0\} = T_0 \subset T_1 \subset T_2 \subset \cdots$, which decompose 0 $X_t - X_{t_0}$ into increments along the *chain* $\{\pi_n\}_n: X_t - X_{t_0} = \sum_{n \ge 0} X_{\pi_{n+1}(t)} - X_{\pi_n(t)}$ (the equality holds as is only if $\pi_n(t) = t$ for sufficiently large n).
 - We constraint $|T_n| = N_n = 2^{2^n}$ (except for $|T_0| = 1$). Note that $\sqrt{\log N_n} = 2^{n/2}$ ($\sqrt{\log x}$ will arise later as the inverse of e^{x^2}). Also $N_n^2 \le N_{n+1}$.
 - One can show that for a sub-Gaussian process, 0

$$P\left\{\sup_{t\in T} |X_t - X_{t_0}| > uS\right\} \le Ce^{-u^2/2} \qquad E \sup X_t \le C \cdot S$$

• $S := \sup \sum_{n \ge 0} 2^{\frac{n+1}{2}} |\pi_{n+1}(t) - \pi_n(t)| \le 3 \sup \sum_{n \ge 0} 2^{\frac{n}{2}} d(t, T_n)$

- $S := \sup_{t} \sum_{n \ge 0} 2^{-2} \prod_{n+1}^{n} (t) \prod_{t} \sum_{t} \sum_{n \ge 0} 2^{n/2} \prod_{t} \sum_{t} \sum_{n \ge 0} 2^{n/2} \prod_{t} \sum_{t} \sum_{n \ge 0} 2^{n/2} \prod_{t} \sum_{t} \sum_{t} \frac{1}{2} \sum_{n \ge 0} 2^{n/2} \prod_{t} \sum_{t} \frac{1}{2} \sum_{t} \sum_{t} \sum_{t} \frac{1}{2} \sum_{t} \sum_{t$
- Entropy Integral:
 - *N* is the covering number of the set *T* by ϵ -balls wrt the metric ρ .
 - \circ log N is also called the *metric entropy* of (T, ρ) , not sure why (I guess N is kind of the number of bits in T up to ϵ -resolution, but then why log?).

• Dudley's Theorem:
$$\{X_t\} \sim subG \Rightarrow E\left[\sup_{t \in T} X_t\right] \leq J(\infty)$$
 (similarly: $E\left[\sup_{t,s \in T} (X_t - X_s)\right] \leq J(\infty)$).

- This bounds a process using only its subG property and the geometry of its indices.
- Note: for a meaningful bound the integral must be finite. We usually assume that T is bounded, hence $J(\infty) = J(diam(T))$.
- Application Rademacher:

$$\forall f, g \in G: \ \rho_n(f, g) \coloneqq \sqrt{\frac{1}{n} \sum_{i=1}^n \left(f(x_i) - g(x_i) \right)^2}; \qquad \forall f \in G: \ X_f \coloneqq \frac{1}{\sqrt{n}} \sum \sigma_i f(x_i)$$

• $\{X_f\}_{f \in G}$ is clearly a sub-Gaussian process, thus (for a corresponding *D*):

$$R_n(G) = E\left[\sup_{f\in G} \frac{1}{n} \sum_{i=1}^n \sigma_i f(x_i)\right] \lesssim \frac{1}{\sqrt{n}} \int_0^D \sqrt{\log N(\epsilon; G, \rho_n)} \, d\epsilon$$

• Using another bound on N, Rademacher complexity can be further bounded by $\lesssim \sqrt{\nu/n}$, where ν is the **VC-dimension** of the domain X of the function-class G.

Martingales

- Main source: James Aspnes, Peter Morters
- **Martingale**: a stochastic process $\{X_t\}_{t \in N}$ with $E[X_{t+1}|X_1 \dots X_t] = X_t$.
 - Example: share price in an efficient market (or any random walk).
 - Note: the definition is local (X_t vs. X_{t+1}), but the consequences on the process are global.
 - The conditioned variables $X_1 \dots X_t$ are often replaced with observed information F_t named *filtration*.
- By induction: $\forall k \ge 1$: $E[X_{t+k}|X_1 \dots X_t] = X_t$ (in particular: $\forall t$: $E[X_t] = E[X_0]$)
 - Example: let X_t random walk; then (by direct calculation) $Y_t := X_t^2 t$ is martingale, hence $E[X_t^2] = E[Y_t] + t = E[Y_0] + t = t$ (which is indeed the variance of a r.w.).
- A martingale (with $E[X_0] = 0$) as a sum of uncorrelated random variables $\Delta_t := X_t X_{t-1}$:
 - $E[\Delta_{t+1}|\Delta_1 ... \Delta_t] = E[X_{t+1} X_t|X_1 ... X_t] = 0 \rightarrow {\Delta_t}$ are uncorrelated.
 - In particular: $Var(X_t) = \sum_{s \le t} E[\Delta_s^2].$
 - Azuma-Hoeffding inequality: $|\Delta_t| \le c_t$ a.s. $\Rightarrow P(|X_t| \ge \epsilon) \le 2e^{-\frac{\epsilon^2}{2\sum_t c_t^2}}$
- Stopping time:
 - The martingale property does not hold in general if t is replaced by a random variable T.
 - Example: T is the first step with $X_t > 1$ (thus clearly $E[X_T] \ge 1 > 0 = E[X_0]$).
 - Example: stopping time of the (infinite) double-or-nothing strategy.
 - **Optional Stopping Theorem**: $E[X_T] = E[X_0]$ for a martingale $\{X_t\}$, if (1) $P(T < \infty) = 1$; (2) $E[|X_T|] < \infty$; and (3) $\lim_{t \to \infty} E[X_t \cdot \chi_{T>t}] = 0$.
- Sub-martingale: $X_t \le E[X_{t+1}|X_1...X_t]$ (hence $X_t \le E[X_{t+k}|X_1...X_t]$ and $E[X_0] \le E[X_t]$).
 - \circ Terminology: sub = current value is below future expectation = increasing expectations.
 - Azuma-Hoeffding inequality holds in a one-sided variant ($P(X_t \leq -\epsilon) \leq \cdots$).
 - *Super-martingale*: same with opposite inequalities.