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Topics in Statistical Learning Theory 

Summarized by Ido Greenberg in 2021, based on various sources as mentioned below. 
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Background 
PAC-learning & VC-dimension: see a brief summary here (P.13-14). 

Glivenko-Cantelli Theorem: see here (P.7). Note that the proof relies on symmetrization argument. 

Symmetrization 
 Symmetrization lemma: let 𝜙 convex, 𝐸[𝑍] = 0, 𝜖~𝑢𝑛𝑖𝑓{±1} independently of 𝑍, then: 

𝑬𝝓(𝒁) ≤ 𝑬𝝓(𝟐𝝐𝒁) 

o I guess it’s called symmetrization because 𝜖𝑍 has a symmetric distribution. 

o That’s a useful technique for proving various inequalities in statistics (e.g. bounding Orlicz 

norm of a sum using Orlicz norms of the elements; and VC-dimension bounds [1,2]). 

 Examples: 

o 𝜙(𝑍) = 𝑍      0 ≤ 0 

o 𝜙(𝑍) = 𝑍2      𝑉𝑎𝑟(𝑍) ≤ 𝑉𝑎𝑟(2𝑍) 

 The proof relies on 2 independent copies of 𝑍, Jensen inequality and convexity of 𝜙: 

𝐸𝑍1
𝜙(𝑍1) = 𝐸𝑍1

𝜙(𝑍1 − 𝐸𝑍2
𝑍2) ≤ 𝐸𝑍1

𝐸𝑍2
𝜙(𝑍1 − 𝑍2) = 𝐸𝜖𝐸𝑍1

𝐸𝑍2
𝜙(𝜖(𝑍1 − 𝑍2))

≤ 𝐸𝜖𝐸𝑍1
𝐸𝑍2

1

2
(𝜙(2𝜖𝑍1) + 𝜙(2𝜖𝑍2)) = 𝐸𝜙(2𝜖𝑍) 

 Generalized Symmetrization Theorem: for i.i.d {𝑋𝑖},𝜖𝑖~𝑢𝑛𝑖𝑓{±1}, and global 𝐶1,2: 

𝑬 𝐬𝐮𝐩
𝐟∈𝐅

|
𝟏

𝑵
∑ 𝒇(𝑿𝒊)

𝑵

𝒊=𝟏

− 𝑬𝒇| ≤ 𝐶1𝑬𝐬𝐮𝐩
𝐟∈𝐅

|
𝟏

𝑵
∑ 𝝐𝒊𝒇(𝑿𝒊)

𝑵

𝒊=𝟏

| ≤ 𝐶2𝐸 sup
f∈F

|
1

𝑁
∑ 𝑓(𝑋𝑖)

𝑁

𝑖=1

− 𝐸𝑓| +

sup
f∈F

|𝐸𝑓|

√𝑁
 

o I.e. the expected deviation |𝑓(𝑋)̅̅ ̅̅ ̅̅ − 𝐸𝑓| remains similar after symmetrization |𝜖𝑓(𝑋)̅̅ ̅̅ ̅̅ ̅̅ |. 

 Another variant of the symmetrization theorem bounds the probability 𝑃𝑟( |𝑓(𝑋)̅̅ ̅̅ ̅̅ − 𝐸𝑓| > 𝜌). 

https://idogreenberg.neocities.org/linked%20files/Courses%20Summaries/Udacity%20Supervised%20Learning.pdf
https://idogreenberg.neocities.org/linked%20files/Courses%20Summaries/Advanced%20Statistical%20Theory.pdf
http://www.cmap.polytechnique.fr/~bousquet/mlss_slt.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec14.pdf
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Rademacher Complexity 
 Main source: lecture notes of Clayton Scott by Deng & Moon 

 VC-dimension quantifies the expressiveness of a class of hypotheses of binary functions. 

Rademacher generalizes this notion for real-valued functions. 

 Definition:  �̃�𝒁(𝑮) ≔ 𝑬𝝈 [𝐬𝐮𝐩
𝒈∈𝑮

𝟏

𝒏
∑ 𝝈𝒊𝒈(𝒁𝒊)𝒏

𝒊=𝟏 ],   𝑅𝑛(𝐺) ≔ 𝐸𝑍[�̃�𝑍(𝐺)] 

o These are Empirical Rademacher Complexity and Rademacher Complexity, respectively. 

o 𝐺 is a class of hypotheses (bounded functions); 𝜎𝑖 are iid 𝑢𝑛𝑖𝑓{±1}; 𝑍 are data samples. 

 Interpretations: 

o 𝐺 can fit different sign combinations of 𝜎 (to achieve large value, 𝑔(𝑍𝑖) has to be very 

positive if 𝜎𝑖 = 1 and very negative if -1). 

o 𝐺 can fit different directions of the vector 𝜎. 

 Rademacher complexity bound:  W.p. 1 − 𝛿: 

∀𝑔 ∈ 𝐺:      𝑬[𝒈(𝒁)] ≤
𝟏

𝒏
∑ 𝒈(𝒁𝒊) + 𝟐𝑹𝒏(𝑮) + 𝑩√

𝐥𝐨𝐠 𝟏/𝜹

𝟐𝒏

𝒏

𝒊=𝟏

 

o 𝑍𝑖  are iid data samples (the probability 1 − 𝛿 is wrt them); 𝐵 is the uniform bound on 𝐺. 

o The proof relies on a symmetrization argument. 

o Interpretation: the expected loss is probably close to the empirical loss, up to the 

Rademacher complexity; if 𝐺 is very expressive, we may choose 𝑔 that overfits, but then 

the small empirical error does not necessarily represent the expected error. 

o Similar versions exist for �̃�𝑍 (instead of 𝑅𝑛) and for two-sided bound. 

Chaining 
 Main sources: David Pollard, Yale; Talagrand; Rakhlin 

 Stochastic process: 𝑋 = {𝑋𝑡}𝑡∈𝑇 

o Example:  𝑍~𝑁(0, 𝐼𝑑),   𝑇 = 𝑅𝑑 ,   𝑋𝑡 = 𝑍⊤𝑡. 

 Process control: 

o Relies on assumptions about the increments of the process, e.g. ||𝑋𝑠 − 𝑋𝑡|| ≤ 𝐶||𝑠 − 𝑡|| 

or 𝑃{||𝑋𝑠 − 𝑋𝑡|| ≥ 𝜂||𝑠 − 𝑡||} ≤ 𝛽(𝜂). 

 E.g. sub-Gaussian process:  ∀𝜆 ∈ 𝑅, ∀𝑡, 𝑠 ∈ 𝑇:    𝐸[𝑒𝜆(𝑋𝑡−𝑋𝑠)] ≤ 𝑒
𝜆2||𝑡−𝑠||

2

2  

 Equivalent definition:  ∀𝑡, 𝑠 ∈ 𝑇:   𝑋𝑡 − 𝑋𝑠~𝑠𝑢𝑏𝐺 (||𝑡 − 𝑠||
2

) 

 For convenience, the process is usually assumed to be centered 𝐸𝑋𝑡 = 0. 

o Aims to find global tail-bounds, e.g. on sup
𝑡∈𝑇

|𝑋𝑡| or 𝑂𝑆𝐶(𝛿, 𝑋, 𝑇) ≔ sup
|𝑠−𝑡|<𝛿

|𝑋𝑠 − 𝑋𝑡| 

(oscillation). 

 Note: for a symmetric process 𝐸 sup|𝑋𝑡 − 𝑋𝑠| = 2𝐸 sup 𝑋𝑡  so both goals are 

essentially the same. 

 Also note that ∀𝑡0:  𝐸 sup 𝑋𝑡 = 𝐸 sup 𝑋𝑡 − 𝑋𝑡0
 (since 𝐸𝑋𝑡0

= 0), which is 

sometimes more convenient to work with. 

 A common approach to prove global bounds over an infinite set 𝑇: 

http://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/10_rademacher.pdf
http://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/10_rademacher.pdf
http://www.stat.yale.edu/~pollard/Books/Mini/Chaining.pdf
http://www.stat.yale.edu/~pollard/Books/Mini/Chaining.pdf
https://michel.talagrand.net/ULB.pdf
http://www-math.mit.edu/~rigollet/IDS160/Notes/IDS_160_Lecture_16-17.pdf
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o (1) Prove for finite subsets 𝑇𝑛 ⊂ 𝑇; (2) take the limit 𝑛 → ∞ for a countable subset that is 

dense in 𝑇; (3) generalize the bound for 𝑇 itself. 

o For (1) to be effective, the bound must not diverge when 𝑛 → ∞. For example, naively 

taking the union bound 𝑃{max|𝑋𝑡| > 𝜂} ≤ ∑𝑃{𝑋𝑡 > 𝜂} would usually diverge with 𝑛. 

However, the union bound is clearly sub-optimal for positively-correlated variables. 

 Chaining: 

o We would like to find a subset 𝑇1 ⊂ 𝑇 that is rather uncorrelated (hence a union bound 

is effective) and that covers 𝑇 reasonably, so that a good mapping 𝜋1: 𝑇 → 𝑇1 would allow 

us to bound 𝑋𝑡 − 𝑋𝑡0
= (𝑋𝑡 − 𝑋𝜋1(𝑡)) + (𝑋𝜋1(𝑡) − 𝑋𝑡0

) effectively. 

o More generally, we consider the subsets {𝑡0} = 𝑇0 ⊂ 𝑇1 ⊂ 𝑇2 ⊂ ⋯, which decompose 

𝑋𝑡 − 𝑋𝑡0
 into increments along the chain {𝜋𝑛}𝑛: 𝑋𝑡 − 𝑋𝑡0

= ∑ 𝑋𝜋𝑛+1(𝑡) − 𝑋𝜋𝑛(𝑡)𝑛≥0  (the 

equality holds as is only if 𝜋𝑛(𝑡) = 𝑡 for sufficiently large 𝑛). 

o We constraint |𝑇𝑛| = 𝑁𝑛 = 22𝑛
 (except for |𝑇0| = 1). Note that √log 𝑁𝑛 = 2𝑛/2 (√log 𝑥 

will arise later as the inverse of 𝑒𝑥2
). Also 𝑁𝑛

2 ≤ 𝑁𝑛+1. 

o One can show that for a sub-Gaussian process, 

𝑷 {𝐬𝐮𝐩
𝐭∈𝐓

|𝑿𝒕 − 𝑿𝒕𝟎
| > 𝒖𝑺} ≤ 𝑪𝒆−𝒖𝟐/𝟐  𝑬 𝐬𝐮𝐩 𝑿𝒕 ≤ 𝑪 ⋅ 𝑺 

 𝑆 ≔ sup
𝑡

∑ 2
𝑛+1

2 |𝜋𝑛+1(𝑡) − 𝜋𝑛(𝑡)|𝑛≥0 ≤ 3 sup
t

∑ 2
𝑛

2𝑑(𝑡, 𝑇𝑛)𝑛≥0  

o Dudley’s entropy bound: as this holds for any chain 𝑇0 ⊂ 𝑇1 ⊂ 𝑇2 ⊂ ⋯ (assuming |𝑇𝑛| ≤

𝑁𝑛), we obtain the bound:  𝐸 sup
t

𝑋𝑡 ≤ 𝐶 ∑ 2𝑛/2 inf
𝑇𝑛⊂𝑇

sup
t

𝑑(𝑡, 𝑇𝑛)𝑛≥0  

 Entropy Integral:  𝑱(𝑫) ≔ ∫ √𝐥𝐨𝐠 𝑵(𝝐; 𝑻, 𝝆) 𝒅𝝐
𝑫

𝟎
 

o 𝑁 is the covering number of the set 𝑇 by 𝜖-balls wrt the metric 𝜌. 

o log 𝑁 is also called the metric entropy of (𝑇, 𝜌), not sure why (I guess 𝑁 is kind of the 

number of bits in 𝑇 up to 𝜖-resolution, but then why log?). 

 Dudley’s Theorem: {𝑋𝑡}~𝑠𝑢𝑏𝐺  𝑬 [𝐬𝐮𝐩
𝐭∈𝐓

𝑿𝒕] ≾ 𝑱(∞)   (similarly: 𝐸 [sup
t,s∈T

(𝑋𝑡 − 𝑋𝑠)] ≾ 𝐽(∞)). 

o This bounds a process using only its subG property and the geometry of its indices. 

o Note: for a meaningful bound the integral must be finite. We usually assume that 𝑇 is 

bounded, hence 𝐽(∞) = 𝐽(𝑑𝑖𝑎𝑚(𝑇)). 

 Application – Rademacher: 

o ∀𝑓, 𝑔 ∈ 𝐺:   𝜌𝑛(𝑓, 𝑔) ≔ √
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑔(𝑥𝑖))

2𝑛
𝑖=1 ; ∀𝑓 ∈ 𝐺:  𝑋𝑓 ≔

1

√𝑛
∑𝜎𝑖𝑓(𝑥𝑖) 

o {𝑋𝑓}
𝑓∈𝐺

 is clearly a sub-Gaussian process, thus (for a corresponding 𝐷): 

𝑹𝒏(𝑮) = 𝑬 [𝐬𝐮𝐩
𝒇∈𝑮

𝟏

𝒏
∑ 𝝈𝒊𝒇(𝒙𝒊)

𝒏

𝒊=𝟏

] ≾
𝟏

√𝒏
∫ √𝐥𝐨𝐠 𝑵(𝝐; 𝑮, 𝝆𝒏) 𝒅𝝐

𝑫

𝟎

 

o Using another bound on 𝑁, Rademacher complexity can be further bounded by ≾ √𝝂/𝒏, 

where 𝜈 is the VC-dimension of the domain Χ of the function-class 𝐺. 

https://web.stanford.edu/class/cs229t/2017/Lectures/metric-entropy.pdf
http://www.stat.cmu.edu/~arinaldo/Teaching/36755/F16/Scribed_Lectures/36755_F16_Nov02.pdf
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Martingales 
 Main source: James Aspnes, Peter Morters 

 Martingale: a stochastic process {𝑋𝑡}𝑡∈𝑁 with 𝐸[𝑋𝑡+1|𝑋1 … 𝑋𝑡] = 𝑋𝑡. 

o Example: share price in an efficient market (or any random walk). 

o Note: the definition is local (𝑋𝑡 vs. 𝑋𝑡+1), but the consequences on the process are global. 

o The conditioned variables 𝑋1 … 𝑋𝑡 are often replaced with observed information 𝐹𝑡 

named filtration. 

 By induction:  ∀𝑘 ≥ 1: 𝑬[𝑿𝒕+𝒌|𝑿𝟏 … 𝑿𝒕] = 𝑿𝒕  (in particular: ∀𝑡: 𝐸[𝑋𝑡] = 𝐸[𝑋0]) 

o Example: let 𝑋𝑡 random walk; then (by direct calculation) 𝑌𝑡 ≔ 𝑋𝑡
2 − 𝑡 is martingale, 

hence 𝐸[𝑋𝑡
2] = 𝐸[𝑌𝑡] + 𝑡 = 𝐸[𝑌0] + 𝑡 = 𝑡 (which is indeed the variance of a r.w.). 

 A martingale (with 𝐸[𝑋0] = 0) as a sum of uncorrelated random variables 𝚫𝒕 ≔ 𝑿𝒕 − 𝑿𝒕−𝟏: 

o 𝐸[Δ𝑡+1|Δ1 … Δt] = 𝐸[𝑋𝑡+1 − 𝑋𝑡|𝑋1 … 𝑋𝑡] = 0    {Δ𝑡} are uncorrelated. 

o In particular:  𝑉𝑎𝑟(𝑋𝑡) = ∑ 𝐸[Δ𝑠
2]𝑠≤𝑡 . 

o Azuma-Hoeffding inequality:  |Δ𝑡| ≤ 𝑐𝑡 a.s.    𝑷(|𝑿𝒕| ≥ 𝝐) ≤ 𝟐𝒆
−

𝝐𝟐

𝟐 ∑ 𝒄𝒕
𝟐

𝒕  

 Stopping time: 

o The martingale property does not hold in general if 𝑡 is replaced by a random variable 𝑇. 

 Example: 𝑇 is the first step with 𝑋𝑡 > 1 (thus clearly 𝐸[𝑋𝑇] ≥ 1 > 0 = 𝐸[𝑋0]). 

 Example: stopping time of the (infinite) double-or-nothing strategy. 

o Optional Stopping Theorem: 𝐸[𝑋𝑇] = 𝐸[𝑋0] for a martingale {𝑋𝑡}, if (1) 𝑃(𝑇 < ∞) = 1; 

(2) 𝐸[|𝑋𝑇|] < ∞; and (3) lim
𝑡→∞

𝐸[𝑋𝑡 ⋅ 𝜒𝑇>𝑡] = 0. 

 Sub-martingale: 𝑋𝑡 ≤ 𝐸[𝑋𝑡+1|𝑋1 … 𝑋𝑡]   (hence 𝑋𝑡 ≤ 𝐸[𝑋𝑡+𝑘|𝑋1 … 𝑋𝑡] and 𝐸[𝑋0] ≤ 𝐸[𝑋𝑡]). 

o Terminology: sub = current value is below future expectation = increasing expectations. 

o Azuma-Hoeffding inequality holds in a one-sided variant (𝑃(𝑋𝑡 ≤ −𝜖) ≤ ⋯). 

o Super-martingale: same with opposite inequalities. 

 

https://www.cs.yale.edu/homes/aspnes/pinewiki/Martingales.html
https://people.bath.ac.uk/maspm/martingales.pdf

