Topics in Statistical Learning Theory

Summarized by ldo Greenberg in 2021, based on various sources as mentioned below.
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Background

PAC-learning & VC-dimension: see a brief summary here (P.13-14).

Glivenko-Cantelli Theorem: see here (P.7). Note that the proof relies on symmetrization argument.

Symmetrization
e Symmetrization lemma: let ¢ convex, E[Z] = 0, e~unif{+1} independently of Z, then:
Ep(Z) < Ep(2€Z)

o lguessit’s called symmetrization because €Z has a symmetric distribution.
o That’s a useful technique for proving various inequalities in statistics (e.g. bounding Orlicz
norm of a sum using Orlicz norms of the elements; and VC-dimension bounds [1,2]).

e Examples:

o ¢(Z)=Z = 0<0

o ¢(2)=27% > Var(2) <Var(22)
e The proof relies on 2 independent copies of Z, Jensen inequality and convexity of ¢:

Ezl¢(Z1) = Ezl¢(Z1 - EZZZZ) < EzlEzz¢(Z1 —Zy) = EeEzlEzz¢(E(Z1 - Zz))

1
< E.Ez E, E(¢>(2€Zl) + ¢(2€Z,)) = E¢p(2€Z)
e Generalized Symmetrization Theorem: for i.i.d {X;},€;~unif{+1}, and global C; ,:
Esup | f(X) — Ef| < CiEsup |- ef (X)| < GEsup |- FOX) — Bf |+ L —
feF Ni=1 feF Ni=1 feF Ni=1 \/N

o l.e. the expected deviation |f(X) — Ef| remains similar after symmetrization |6f(X)|.
e Another variant of the symmetrization theorem bounds the probability Pr( |f(X) — Ef| > p).
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https://idogreenberg.neocities.org/linked%20files/Courses%20Summaries/Udacity%20Supervised%20Learning.pdf
https://idogreenberg.neocities.org/linked%20files/Courses%20Summaries/Advanced%20Statistical%20Theory.pdf
http://www.cmap.polytechnique.fr/~bousquet/mlss_slt.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec14.pdf

Rademacher Complexity

e Main source: lecture notes of Clayton Scott by Deng & Moon
e VC-dimension quantifies the expressiveness of a class of hypotheses of binary functions.
Rademacher generalizes this notion for real-valued functions.

o Definition:  Ry(G) =E, sgg%Z?zlaig(Zi) , R, (G) = E4[Ry(6)]
g

o These are Empirical Rademacher Complexity and Rademacher Complexity, respectively.
o G is aclass of hypotheses (bounded functions); g; are iid unif{x1}; Z are data samples.
e Interpretations:
o G can fit different sign combinations of ¢ (to achieve large value, g(Z;) has to be very
positive if 0; = 1 and very negative if -1).
o G can fit different directions of the vector o.
e Rademacher complexity bound: W.p.1 — §:

log1/8
2n

o Z; areiid data samples (the probability 1 — & is wrt them); B is the uniform bound on G.

o The proof relies on a symmetrization argument.

o Interpretation: the expected loss is probably close to the empirical loss, up to the
Rademacher complexity; if G is very expressive, we may choose g that overfits, but then
the small empirical error does not necessarily represent the expected error.

o Similar versions exist for R, (instead of R,,) and for two-sided bound.

Vg e G: E[gZ2)]< %Zl 9(Z)+2R,(G)+B

Chaining
e Main sources: David Pollard, Yale; Talagrand; Rakhlin
e Stochastic process: X = {X¢}ier
o Example: Z~N(0,1;), T=R% X, =Z"t.

e Process control:
o Relies on assumptions about the increments of the process, e.g. ||XS - Xt|| < C||s - t||

or P{|1Xs — X¢I| = n|ls — tI|} < B).
22| 1t=sl)

» E.g. sub-Gaussian process: VA ER,Vt,s ET: E[e’l(xf'xs)] <e :
e Equivalent definition: Vt,s € T: X; — X;~subG (||t — s||2)

e For convenience, the process is usually assumed to be centered EX; = 0.

o Aims to find global tail-bounds, e.g. on sup|X;| or 0SC(6,X,T) = sup |Xg— X;|
teT Is—t|<6

(oscillation).
* Note: for a symmetric process E sup|X; — X;| = 2E sup X; so both goals are
essentially the same.
* Also note that Vty: EsupX; = EsupX; — X;  (since EX; =0), which is
sometimes more convenient to work with.
e A common approach to prove global bounds over an infinite set T':


http://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/10_rademacher.pdf
http://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/10_rademacher.pdf
http://www.stat.yale.edu/~pollard/Books/Mini/Chaining.pdf
http://www.stat.yale.edu/~pollard/Books/Mini/Chaining.pdf
https://michel.talagrand.net/ULB.pdf
http://www-math.mit.edu/~rigollet/IDS160/Notes/IDS_160_Lecture_16-17.pdf

o (1) Prove for finite subsets T,  T; (2) take the limit n — oo for a countable subset that is
dense in T; (3) generalize the bound for T itself.

o For (1) to be effective, the bound must not diverge when n — o. For example, naively
taking the union bound P{max|X;| > n} < Y.P{X; > n} would usually diverge with n.
However, the union bound is clearly sub-optimal for positively-correlated variables.

Chaining:

o We would like to find a subset T; € T that is rather uncorrelated (hence a union bound
is effective) and that covers T reasonably, so that a good mapping 1: T — T; would allow
us to bound X; — X; = (Xt — an(t)) + (an(t) - Xto) effectively.

o More generally, we consider the subsets {t,} =T, € T; € T, C -+, which decompose
X¢ — X¢, into increments along the chain {rt,,},: X — X¢) = ¥ns0 X, () — Xn (o) (the
equality holds as is only if 7, (t) = t for sufficiently large n).

o We constraint |T,,| = N,, = 22" (except for |Ty| = 1). Note that \/log N,, = 2"/2 (,/log x
will arise later as the inverse of e"z). Also N2 < Nyp4q.

o One can show that for a sub-Gaussian process,

P{sup|Xt—Xt0| >uS}SCe"‘2/2 EsupX,<C-S
teT

n+1 n
= S= SliPanoz 2 |y (0) = (O] <3 Slipano 22d(t,T,)
o Dudley’s entropy bound: as this holds for any chain Ty ¢ T; € T, C -+ (assuming |T,| <
N,), we obtain the bound: EsupX; < C Ypso2™? TinfT supd(t, T,)
t ncl ¢

Entropy Integral: J(D) == f: logN(€; T, p) de
o N is the covering number of the set T by e-balls wrt the metric p.
o logN is also called the metric entropy of (T, p), not sure why (I guess N is kind of the
number of bits in T up to e-resolution, but then why log?).

Dudley’s Theorem: {X;}~subG =» E [supXt] < J(e0)  (similarly: E [sup X; — Xs)] < J()).
teT t,seT

o This bounds a process using only its subG property and the geometry of its indices.
o Note: for a meaningful bound the integral must be finite. We usually assume that T is
bounded, hence /() =](diam(T)).
Application — Rademacher:

o VA,9E€G plfg) = EPEL(FG) - g@) V€6 Xy = ETaf ()

o {Xf}feG is clearly a sub-Gaussian process, thus (for a corresponding D):

n

1
sup=>" . (x)
fec M

i=1

1 D
R,(G) =E < —f log N(e; G, p,,) de
Vn o

o Using another bound on N, Rademacher complexity can be further bounded by < \/v/n,
where v is the VC-dimension of the domain X of the function-class G.


https://web.stanford.edu/class/cs229t/2017/Lectures/metric-entropy.pdf
http://www.stat.cmu.edu/~arinaldo/Teaching/36755/F16/Scribed_Lectures/36755_F16_Nov02.pdf

Martingales

Main source: James Aspnes, Peter Morters
Martingale: a stochastic process {X;};ey With E[X;41|X; ... X¢] = X¢.
o Example: share price in an efficient market (or any random walk).
o Note: the definition is local (X; vs. X, 1), but the consequences on the process are global.
o The conditioned variables X; ...X; are often replaced with observed information F;
named filtration.
By induction: Vk > 1: E[X x| X1 .. X¢] = X, (in particular: Vt: E[X;] = E[X,])
o Example: let X, random walk; then (by direct calculation) Y; := X? — t is martingale,
hence E[X?] = E[Y;] + t = E[Y,] + t = t (which is indeed the variance of a r.w.).
A martingale (with E[X,] = 0) as a sum of uncorrelated random variables A; = X; — X;_1:
o E[Apy1]A1 . A = E[X¢pq — X¢| X7 .. X¢e] = 0 = {A.} are uncorrelated.
o Inparticular:  Var(X,) = Y.< E[AZ].

€2
o Azuma-Hoeffding inequality: |A;| < c;a.s. 2 P(|X;| =€) < 2e 2¥ect
Stopping time:
o The martingale property does not hold in general if t is replaced by a random variable T.
» Example: T is the first step with X; > 1 (thus clearly E[X;] = 1 > 0 = E[X,]).
= Example: stopping time of the (infinite) double-or-nothing strategy.
o Optional Stopping Theorem: E[X;] = E[X,] for a martingale {X;}, if (1) P(T < ) = 1;
(2) E[|1X7]] < o0; and (3) tll_)rgl) E[X; - xr>¢] = 0.
Sub-martingale: X; < E[X;,1|X; ... X¢] (hence X; < E[X¢yx|Xy ... X¢] and E[X,] < E[X]).
o Terminology: sub = current value is below future expectation = increasing expectations.
o Azuma-Hoeffding inequality holds in a one-sided variant (P(X; < —€) < -+).
o Super-martingale: same with opposite inequalities.


https://www.cs.yale.edu/homes/aspnes/pinewiki/Martingales.html
https://people.bath.ac.uk/maspm/martingales.pdf

