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Introduction 
• Probability = [ model + parameters → probability of data ] 

• (Parametric) Statistics = [ model + data → parameters ] 

o Non-parametric statistics – which does not assume any parametric model in advance – is 

out of the scope. 

Descriptive statistics 
• Mean, truncated average (ממוצע קטום), median, variance, std, range, quartiles (Q1, Q3), IRQ=Q3-

Q1, quantiles. 

 .50%-קטימה השואפת ל החציון כגבול של ממוצעים קטומים עם •

• Asymmetry coefficient ~ 3rd moment ~ ∑(𝑥𝑖−< 𝑥 >)3 ~ which direction is the longer tail. 

• Bar plot, hist (number of samples is proportional to space → width can be heterogeneous). 

• Box plot – expresses size (median), dispersion (quartiles), possibly tails (min & max up to 2.5 IRQs), 

and exceptions (points beyond the 2.5 IRQs). 

• Q-Q plot – compare two distributions by plotting quantile-vs-quantile. 

https://www.youtube.com/playlist?list=PL8A609A4F0B1BE65C
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o When comparing empirical dist’ to theoretical one, it’s conventional to plot xi vs. 

𝐹 (𝑝 =
𝑖

𝑛+1
), e.g. for 10 samples, x1 (after sort) represents F(1/11) and x10 represents 

F(10/11). 

o Comparing 𝑌 = 𝑁(𝜇, 𝜎2) with 𝑋 = 𝑁(0,1) yields a line with intercept 𝜇 and incline 𝜎, 

since 𝑌 = 𝜇 + 𝜎𝑋. Thus when studying a possibly-normal empirical distribution, there’s 

no need to estimate the parameters in advance – they can be QQ-plotted vs. standard 

normal dist’. 

Inferential statistics 

Introduction 
• Notation conventions: 

o GREEK/greek = parameters Θ 

o ENGLISH = statistics  𝑋 

o  ̂  = estimators   Θ̂ 

o english = values   𝑥 

• Statistic = function of the known data (in particular doesn’t directly depend on the parameters of 

the underlying dist’) 

• Estimation: statistic which estimates a parameter is an estimator, and its value for certain data is 

an estimate. 

o Consistent estimator – converges (in probability) to the parameter when n→inf. 

▪ Convergence in probability:  ∀ϵ > 0:   Pr(|𝜃𝑛 − 𝜃| > 𝜖) → 0. 

o Unbiased estimator – E[estimator]=parameter. 

Estimation methods 
• Moments estimation method: parameters can often be calculated as function of the moments, 

and the moments can be consistently estimated from data using simple estimators (means of 

powers). 

o For example: 𝜎̂ = √𝜇2 − 𝜇1
2̂
≔√𝜇2̂ − 𝜇1̂

2 (𝜎2 ≔ 𝐸((𝑋 − 𝜇)2) = 𝐸(𝑋2) − 𝐸(𝑋)2 ) 

▪ (estimator is chosen to be defined by moments’ estimators) 

o Estimators defined by the moments method are always consistent (continuous function 

of consistent estimators…). 

o One should use as low moments as possible, since higher moments might have infinite 

expectations in certain cases. 

• Paradoxes in the moments method: 

o 𝜎2̂ ≔ 𝜇2̂ − 𝜇1̂
2 is consistent (converges to 𝜎2) but not unbiased! 

▪ Since 𝑬(𝝁𝟏̂
𝟐) = 𝐸(𝑋̅2) = 𝑉𝑎𝑟(𝑋̅) + 𝐸(𝑋̅)2 =

𝜎2

𝑛
+ 𝜇1

2  ≠  𝝁𝟏
𝟐. 

▪ Thus 𝑬(𝝈𝟐̂) = 𝜇2 −
𝜎2

𝑛
− 𝜇1

2 = 𝜎2 −
𝜎2

𝑛
= 𝝈𝟐 (

𝒏−𝟏

𝒏
). 

▪ Thus we choose 𝝈𝟐̂ ≔
𝒏

𝒏−𝟏
(𝝁𝟐̂ − 𝝁𝟏̂

𝟐) which is both consistent and unbiased 

(though not defined by the moments method). 

• Note: √𝝈𝟐̂ is not unbiased estimator for Standard Deviation! 

https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
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▪ Bias explanation: Variance is measured using 𝝁𝟐̂ that estimates 𝜇2 = 𝑉𝑎𝑟 + 𝜇1
2, 

i.e. both the dispersion of X (Var) and its squared bias (𝝁𝟏
𝟐). To isolate the 

dispersion we subtract the squared bias’s estimator 𝝁𝟏̂
𝟐, but due to the squaring 

it tends to overestimate (since after squaring, 2→3 is larger error than 2→1), 

thus the variance is underestimated and requires the correction 1/n → 1/(n-1). 

• Moral: expectation is sensitive to non-linear units-conversion such as 

squaring. 

o For 𝑿~𝑼(𝟎, 𝜽), 𝜽̂ ≔ 𝟐𝝁𝟏̂ = 𝟐𝒙̅ is consistent, even though it may be logically impossible! 

▪ E.g. for data (1,2,9) we have avg=4 thus 𝜃 = 8, though x3=9>8! 

▪ Note: Uniform distribution is often a simple example for anomalies. 

• Maximum likelihood: 𝜃 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥𝑃({𝑥}; 𝜃) – usually better than the moments method. 

Properties of estimators 
• Bias of estimator: 𝑩𝑻(𝜽) ≔ 𝑬(𝑻) − 𝜽 

• MSE of Tn (estimator based on n samples): 𝑴𝑺𝑬𝑻𝒏(𝜽) ≔ 𝑬[(𝑻𝒏 − 𝜽)𝟐] 

o Claim: [MSE(Tn)→0] ➔ [Tn→𝜃 in probability] ➔ Tn is consistent 

▪ Proved directly by Chebyshev inequality. 

o Claim:   𝑴𝑺𝑬𝑻(𝜽) = 𝑽𝒂𝒓(𝑻) + 𝑩𝑻(𝜽)
𝟐 = variance + bias 

▪ Proved by adding +E(T)-E(T) within the definition of the MSE. 

• Estimators of Uniform distribution [0, 𝜃]: 

o 𝑀𝑆𝐸2𝑥̅(𝜃) = 𝑏𝑖𝑎𝑠2 + 𝑉𝑎𝑟 = 0 + 4𝑉𝑎𝑟(𝑥̅) =
𝜃2

3𝑛
 

o 𝑀𝑆𝐸max(𝑥𝑖)
(𝜃) = 𝑏𝑖𝑎𝑠2 + 𝑉𝑎𝑟 = ⋯ = (

𝜃

𝑛+1
)
2
+⋯ = 𝑂(

1

𝑛2
) ➔ better 

• Note: 

o Consistency of estimator is preserved under continuous function (as in the moments 

method). 

o Unbiasedness of estimator is preserved under linear function. 

• Risk of estimator: 𝑅 ≔ 𝐸 (𝐿(𝜃, 𝜃)) for some Loss function L. 

Sufficiency 

• Sufficiency of estimator 𝑇𝜃:  𝑷({𝒙𝒊}|𝑻𝜽) is independent of 𝜽. 

o Meaning: given 𝑇𝜃, the dist’ of the data is independent on 𝜃 

o ➔ the raw data {x} doesn’t provide additional information about 𝜃 

o ➔ 𝑇𝜃({𝑥}) is sufficient to exploit all the information of {x} about 𝜃. 

▪ See also: Fisher information, Observed information 

o E.g. in Bernoulli distribution, the rate of successes 
∑𝑥𝑖

𝑛
 is sufficient for estimation of 𝑝. 

o Note: statistic doesn’t have to be scalar (e.g. 𝑆 ≔ {𝑥} is always sufficient for any 𝜃…). 

Minimal sufficient statistic is a sufficient statistic of “minimal dimension” (formally – for 

any other sufficient T, it holds that 𝑆 = 𝑓(𝑇)). 

• Fisher-Neyman Factorization Theorem: [𝑆 is sufficient wrt 𝜃] iff [𝑓({𝑥}; 𝜃) = ℎ({𝑥}) ⋅ 𝜙(𝑆, 𝜃)]. 

o Example – normal distribution: 

https://en.wikipedia.org/wiki/Fisher_information
https://en.wikipedia.org/wiki/Observed_information
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o If 𝜇 is known – then ∑(𝑥𝑖 − 𝜇) is sufficient wrt 𝜎:     𝑓({𝒙}, 𝝁; 𝝈) = 1 ⋅ (
1

√2𝜋𝜎2
𝑛 𝑒

−
∑(𝒙𝒊−𝝁)

𝟐

2𝜎2 ) 

o If 𝜎 is known – then 𝑥̅ is sufficient wrt 𝜇:     𝑓({𝒙}, 𝝈; 𝝁) =
1

√2𝜋𝜎2
𝑛 𝑒

−
∑(𝑥𝑖−𝑥̅)

2
+∑(𝑥̅−𝜇)2

2𝜎2 =

(
1

√2𝜋𝜎2
𝑛 𝑒

−
∑(𝑥𝑖−𝑥̅)

2

2𝜎2 ) ⋅ (𝑒
−
∑(𝒙̅−𝜇)2

2𝜎2 ) 

o If both are unknown – then 𝑥̅ and ∑(𝑥𝑖 − 𝑥̅) together are a minimal sufficient statistic:

 𝑓({𝒙}; 𝝁, 𝝈) = 1 ⋅ (
1

√2𝜋𝜎2
𝑛 𝑒

−
∑(𝒙𝒊−𝒙̅)

𝟐
+∑(𝒙̅−𝜇)2

2𝜎2 ) 

Sampling distributions 
• What is the required size of a sample set intended to measure 𝜃? 

o 𝒎𝒊𝒏{𝒏 ∈ 𝑵   |   𝑷[|𝑻𝜽 − 𝜽| > 𝒅] < 𝜶}  (for given d,𝛼) 

o E.g. for 𝜇 in 𝑁(𝜇, 𝜎2):   𝑃[|𝑥̅ − 𝜇| > 𝑑] = 2(1 − Φ(
𝑑√𝑛

𝜎
)) ➔     Φ(

𝑑√𝑛

𝜎
) > 1 −

𝛼

2

 ➔  𝑛 > 𝑍
1−

𝛼

2

2 𝜎2

𝑑2
  

o This actually holds for any distribution, since 𝑥̅ → 𝜇 by the Central Limit Theorem. 

𝜒2 distribution 

• 𝝌𝟐(𝒏):  𝒇(𝒚) ≔
𝟏

𝚪(
𝒏

𝟐
)𝟐

𝒏
𝟐

𝒆−
𝒚

𝟐𝒚
𝒏

𝟐
−𝟏  (𝑦 ≥ 0) 

o n = “degrees of freedom” 

o n=2: 𝑓(𝑦) =
1

2
𝑒−𝑦/2   ➔ generalization of exponential distribution. 

o Private case of Gamma distribution with 𝜆 =
1

2
, 𝛼 =

𝑛

2
: 

Γ(𝜆, 𝛼):   𝑓(𝑦) ≔
𝜆𝛼

Γ(𝛼)
𝑒−𝜆𝑦𝑦𝛼−1 

o 𝑍~𝑁(0,1) ➔ 𝒁𝟐~𝝌𝟐(𝟏) 

o ∑𝒁𝒊
𝟐~𝝌𝟐(𝒏)    (sum of independent Gamma dists is calculated using moment-function?) 

o In general, for independent variables, 𝝌𝟐(𝒏𝟏) + 𝝌𝟐(𝒏𝟐) = 𝝌𝟐(𝒏𝟏 + 𝒏𝟐) 

o 𝐸[𝑦~𝜒2(𝑛)] = 𝑛,  𝑉𝑎𝑟 = 2𝑛 

o 
𝜒2(𝑛)

𝑛
→ 1 (with probability) by Law of Large Numbers since 𝜒2(𝑛) = ∑𝜒2(1) 

• Although ∑(
𝑥𝑖−𝜇

𝜎
)
2
~𝜒2(𝑛), without 𝜇 we “lose a degree of freedom”, so ∑(

𝑥𝑖−𝑥̅

𝜎
)
2
~𝜒2(𝑛 − 1) 

o Equivalently for 𝒔𝟐 ≔
∑(𝒙𝒊−𝒙̅)

𝟐

𝒏−𝟏
,  

(𝒏−𝟏)𝒔𝟐

𝝈𝟐
~𝝌𝟐(𝒏 − 𝟏) 

o Proved through 
(𝑥̅−𝜇)2

𝜎2/𝑛
~𝜒2(1) and the fact that 𝒙̅, 𝒔 are independent 

T-distribution and F-distribution 

• 𝑇 ≔
𝑧

√
𝑤𝑘
𝑘

~𝑡(𝑘)  (𝑍~𝑁(0,1),𝑤𝑘~𝜒
2(𝑘)) 

o 𝑇 → 𝑁(0,1) for k→inf since 
𝜒2

𝑛
→ 1 

o 𝑡𝜈
1−𝛼 ≔ arg(𝑃(𝑡(𝜈) < 𝑋) = 𝛼) 
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o 
𝒙̅−𝝁

𝒔/√𝒏
~𝒕(𝒏 − 𝟏) 

• 𝐹𝑚1,𝑚2
≔

𝜒2(𝑚1)/𝜎1

𝜒2(𝑚2)/𝜎2
 

o 𝐹𝑚1,𝑚2
𝛼 = 1/𝐹𝑚2,𝑚1

1−𝛼  

Confidence interval 
• Pivotal quantity (AKA Pivot): 𝑓(𝜃, 𝜃) whose distribution is the same for any 𝜃. 

• For 𝑥𝑖~𝑁(𝜇, 𝜎
2) with unknown params, 𝑥̅ satisfies 𝑃 (𝒙̅ + 𝒕𝜶

𝟐

𝒏−𝟏 𝒔

√𝒏
≤ 𝝁 ≤ 𝒙̅ + 𝒕

𝟏−
𝜶

𝟐

𝒏−𝟏 𝒔

√𝒏
 | 𝝁, 𝒔) =

𝟏 − 𝜶, independently of 𝜇. 

o Note: that’s the probability that 𝑥̅ would be that close to 𝜇 (i.e. if we do many such 

experiments, we expect ~𝛼 of the estimates to be that close to 𝜇. The probability that 

𝝁 lays within the confidence interval is defined only if a prior distribution is assumed 

on 𝝁. 

o 
𝝁−𝒙̅

𝒔/√𝒏
 is a pivot for 𝜇 with T-distribution. 

o [𝑥̅ + 𝑡𝛼
2

𝑛−1 𝑠

√𝑛
  , 𝑥̅ + 𝑡

1−
𝛼

2

𝑛−1 𝑠

√𝑛
] is a 2-sided confidence-interval of 𝜇 with confidence 1 −

𝛼. 

o The symmetric 2-sided confidence-interval is the shortest interval corresponding to a 

given confidence level – if the distribution of the estimator’s distribution is symmetric 

around one maximum. 

o [𝑥̅  , 𝑥̅ + 𝑡1−𝛼
𝑛−1 𝑠

√𝑛
] is a 1-sided confidence-interval of 𝜇 with confidence 1 − 𝛼. 

• For two normally-distributed populations, one similarly has a confidence interval for the 

dispersion ratio 
𝜎2

𝜎1
: [

𝑠2
2

𝑠1
2 𝐹𝑛1−1,𝑛2−1

𝛼/2 
  ,

𝑠2
2

𝑠1
2 𝐹𝑛1−1,𝑛2−1

1−𝛼/2 
] 

o Relevant to measure ratio between diversions of two populations – e.g. men & women 

salaries, or errors of two different measurement devices. 

o Note: in this case the symmetric interval is not the shortest (since F is a-symmetric), but 

is just the quickest to calculate. 

• For two independent normal variables: 

o 𝒙̅ − 𝒚̅ ~ 𝑁 (𝜇1 − 𝜇2,
𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
) 

o If 𝜎1 = 𝜎2 then 
(𝑥̅−𝑦̅)−(𝜇1−𝜇2)

𝜎√
1

𝑛1
+

1

𝑛2

~𝑁(0,1). One can prove that replacing the (typically 

unknown) 𝜎 with 𝜎̂ ≔ 𝑠 (weighted average of 𝑠1 and 𝑠2, which is 𝜒2(𝑛1 + 𝑛2 − 2)) 

yields T-distribution with 𝑛1 + 𝑛2 − 2 DoF. 

o The confidence interval:  𝜇1 − 𝜇2 ∈ 𝑥̅ − 𝑦̅ ± 𝑠√
1

𝑛1
+

1

𝑛2
𝑡𝑛1+𝑛2−2
1−

𝛼

2  

• For two dependent normal variables: 

o If x,y are set to have Cor=𝜌>0, then the confidence interval can be smaller. 

▪ This is called Blocking in experimental statistics, named after choosing similar 

blocks for agricultural experiments. 

o 𝜎𝐷
2 ≔ 𝑉𝑎𝑟(𝑥𝑖 − 𝑦𝑖) = 𝜎1

2 + 𝜎2
2 − 2𝜌𝜎1𝜎2 

▪ → 𝑥 − 𝑦 ~ 𝑁(𝜇1 − 𝜇2  , 𝜎𝐷
2) 
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▪ 𝜎𝐷
2̂ ≔ 𝑠𝐷 (s for the samples 𝐷𝑖 ≔ 𝑥𝑖 − 𝑦𝑖) 

▪ Now the confidence interval can be calculated as in the normal-variable case. 

Hypothesis tests 
• Accepting the Null-Hypothesis H0 ➔ Data {xi} are reasonably consistent with H0 ➔ {𝑥𝑖} ∉

𝑅 where 𝑃(! 𝑅|𝐻0) = 1 − 𝛼. 

• Rejecting H0 in favor of an Alternative-Hypothesis H1 ➔ {𝑥𝑖} ∈ 𝑅. 

o It is a-priory assumed that either H0 is true or H1 is true. 

• Simple hypothesis = specific distribution; composite hypothesis = family of distributions. 

o P=1/2 vs. P>1/2 is one-sided test of simple hypothesis Vs. composite hypothesis. 

• Errors: 

o Type 1 (𝑃 = 𝛼) = false rejection (“radical”) Significance=𝑃(𝑅|𝐻0) = 𝛼 

o Type 2 (𝑃 = 𝛽) = false acceptance (“conservative”) Power = 𝑃(𝑅|𝐻1) = 1 − 𝛽 

o Significant (small 𝛼) = being “fair” with H0 – not rejecting in vain. 

o Powerful (small 𝛽) = being “open” to rejecting H0 in favor of H1. 

• Rule of decision (R) = set of test results for which H0 will be rejected. 

o R1 is better than R2 if 𝛼1 ≤ 𝛼2 & 𝛽1 ≤ 𝛽2. 

o 𝑅 is admissible if no 𝑅′ is better. 

• Setting R given 𝛼: 

o If the range of the data samples is continuous or dense – then R can be defined in terms 

of thresholds on the data. 

o If the range of the data is discrete – with some admissible rules “too” significant (smaller 

𝛼, hence unnecessarily larger 𝛽) and some not enough significant (larger 𝛼) – then the 

exact threshold 𝛼 can be achieved by a mixed rule that randomly chooses one of two pure 

rules (with corresponding probabilities). 

• Neyman-Pearson Lemma: 

o Likelihood ratio: 𝜆(𝑥) ≔ 𝑃(𝑥|𝐻1)/𝑃(𝑥|𝐻0) 

o NP Lemma: for simple-vs.-simple hypothesis test with Significance≤ 𝜶, the maximal 

power is achieved by 𝜙(𝑥) ≔ 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡) ≔ {

1    𝑖𝑓 𝜆(𝑥) > 𝑘𝛼
Γ𝛼  𝑖𝑓 𝜆(𝑥) = 𝑘𝛼
0    𝑖𝑓 𝜆(𝑥) < 𝑘𝛼

 for a certain 𝑘𝛼 – i.e. by 

determining a threshold depending on the required 𝜶, and in the discrete case – possibly 

having random choice in the threshold itself. 

• P-value: 

o 𝑝 = argminα(𝑥 ∈ 𝑅𝛼) =

how significant (conservative, "fair") can we be while still rejecting 𝐻0 =

how conservative (small α) we need to be to yet accept 𝐻0 =

𝑃(having results "𝑎𝑠 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑎𝑠" 𝑥 | 𝐻0) 

o P-value deals only with type-I error – it’s independent of H1. 

• Composite hypotheses test: 

o E.g. 𝐻0 ≔ 𝜇 ≤ 𝜇0 vs. 𝐻1 ≔ 𝜇 > 𝜇0, or 𝐻0 ≔ 𝜇 = 𝜇0 vs. 𝐻1 ≔ 𝜇 ≠ 𝜇0. 

o In general: 𝑯𝟎 ≔ (𝜽 ∈ 𝝎), and 𝜶 ≔ 𝐬𝐮𝐩
𝜽∈𝝎

𝑷𝜽(𝑹). 

o Note: a confidence interval of confidence 𝟏 − 𝜶 around 𝒙̅ contains all the values 𝜇0 of 𝜇 

for which the data {xi} do not reject the hypothesis 𝝁 = 𝝁𝟎 with significance 𝜶. 
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o Generalized likelihood ratio: Λ(𝑥) ≔
𝐬𝐮𝐩
𝜽∈𝝎

𝒇𝜽(𝒙)

𝐬𝐮𝐩
𝜽∈𝛀

𝒇𝜽(𝒙)
 (𝜃 ∈ 𝜔 is H0, Ω = 𝑑𝑜𝑚(𝜃)) 

▪ Generalized likelihood ratio test: Λ(𝑥) < 𝑘𝛼. 

▪ Likelihood ratio for composite HT: λ(𝑥) ≔
𝐬𝐮𝐩
𝜽∈𝝎𝒄

𝒇𝜽(𝒙)

𝐬𝐮𝐩
𝜽∈𝛚

𝒇𝜽(𝒙)
 

• These sups are achieved by ML estimates for 𝜃. 

▪ For normal distribution with unknown 𝜎 and 𝐻0: 𝜇 = 𝜇0, we have: 

• sup
𝜽∈𝛚

𝑓𝜃(𝑥) is achieved by 𝜎̂ = 𝑠 ≔
1

𝑛
∑(𝑥𝑖 − 𝝁𝟎)

2 

• sup
𝜽∈𝛀

𝑓𝜃(𝑥) is achieved by 𝜎̂ = 𝑠 ≔
1

𝑛
∑(𝑥𝑖 − 𝒙̅)2 

o Rejection rule with significance 𝛼 for 𝐻0 ≔ 𝜇 = 𝜇0 vs. 𝐻1 ≔ 𝜇 ≠ 𝜇0: |
𝑥̅−𝜇0

𝑠

√𝑛

| > 𝑡𝑛−1
1−

𝛼

2  

Fit tests 
• Theorem: the generalized likelihood ratio asymptotically satisfies 𝚲∗ ≔ −𝟐𝐥𝐧(𝜦)~𝝌𝟐(𝒏), where 

𝑛 = dim(𝛺) − dim(𝜔). 

o Difference of dimensions n is actually the number of constraints in the model 

corresponding to 𝝎. 

o E.g. if we claim that 𝜇 = 𝜇0 & 𝜎 = 𝜎0 then 𝑛 = dim(𝛺) − dim(𝜔) = 2 − 0 = 2. 

• Fit-test: given data and a possible discrete model, one can calculate the likelihood of the data 

and the maximum likelihood, and test the hypothesis that the data is generated in accordance 

with the model. 

o A continuous model can be tested by approximating it to discrete values (as in histogram). 

o Example: dice with H0 := fair dice, and N rolls with xi:=#(rolls with result i): 

▪ The maximum likelihood is achieved for 𝑃𝑖
𝑀𝐿 ≔ 𝑥𝑖/𝑁. 

▪ The statistic is Λ∗ = −2 ln(𝛬) = −2∑ 𝑥𝑖 ln(𝑃𝑖
0/𝑃𝑖

𝑀𝐿)6
𝑖=1 . 

▪ The distribution under H0 is 𝜒2(5 − 0) = 𝜒2(5), from which one can get p-value. 

o In general for simple hypothesis 𝑯𝟎 = {𝒑𝒊
𝟎}

𝒊=𝟏

𝒏
 on parameters space with 𝐝𝐢𝐦(𝜴) = 𝒏, 

and N samples, we have the asymptotic distribution: 

𝚲∗ = −𝟐∑𝒙𝒊 𝐥𝐧 (
𝒑𝒊
𝟎𝑵

𝒙𝒊
)

𝒏

𝒊=𝟏

~𝝌𝟐(𝒏) 

• Approximated 𝝌𝟐-test: 

o Χ𝑝
2 ≔ ∑(

(𝑂𝑖−𝐸𝑖)
2

𝐸𝑖
) → Λ∗  (they have the same asymptotic distribution) 

▪ Ei = expected i’th value under H0 = 𝑁 ⋅ 𝑝𝑖
0 

▪ Oi = observed i’th value = 𝑥𝑖 

o Proved directly by ln(1+x) ~ x-0.5*x^2. 

o Poor approximation for any 𝐸𝑖 < 5. This can be avoided by uniting values-categories. 

Independence tests 
• Independence test between X1,X2 can be seen as fit test to the hypothesis of independence. 

• Formalization: 
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o Values-categories: {𝑖𝑗}𝑖=1:𝐾1,𝑗=1:𝐾2 (assuming that X1,X2 are K1,K2-discrete) 

o ML: 𝑃𝑖𝑗
𝑀𝐿 = 𝑥𝑖𝑗   (ML of all pairs)  or 𝑂𝑖𝑗 = 𝑥𝑖𝑗  

o H0: 𝑃𝑖𝑗
0 =

𝑥𝑖∗

𝑁
⋅
𝑥∗𝑗

𝑁
 (ML of i times ML of j) or 𝐸𝑖𝑗 = 𝑁𝑃𝑖𝑗

0  

o DoF: (𝐾1𝐾2 − 1) − ((𝐾1 − 1) + (𝐾2 − 1)) = (𝐾1 − 1)(𝐾2 − 1) 

• Note: testing whether a parameter is identical over 2 populations can be done now using 

independence test rather than F-test of the ratio. 

Linear regression 
• Predicting an dependent variable Y using explanatory/independent variable X. 

• Regression function: 𝑔(𝑥) ≔ 𝐸[𝑌|𝑋 = 𝑥] (“value-per-quanta”) 

• Linear regression model: 

o 𝜖𝑖 ≔ (𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)~𝑁(0, 𝜎
2)  (homoscedasticity = 𝜎 is independent of x) 

o Cov(𝜖𝑖 , 𝜖𝑗)=0 for i≠j   (in particular not time series) 

o Goal: estimate 𝒂 ≔ 𝜶̂,    𝒃 ≔ 𝜷̂,    𝒔 ≔ 𝝈̂ 

o Notation: 𝑒𝑖 ≔ 𝜖𝑖̂ ≔ 𝑦𝑖 − 𝑦𝑖̂ = 𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖  

• Note: linearity and independence are strong and mostly unrealistic assumptions. 

• Least squares: 

o 𝑎, 𝑏 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛(∑𝑒𝑖
2) 

o Solution (derive and compare to 0): 

▪ 𝑏 = ⋯ =
∑(𝑦𝑖−𝑦̅)𝑥𝑖

∑(𝑥𝑖−𝑥̅)𝑥𝑖
= ⋯ = ∑

(𝑥𝑖−𝑥̅)𝑦𝑖

∑(𝑥𝑖−𝑥̅)
2      = ∑𝑤𝑖𝑦𝑖      (∑𝑤𝑖 = 0,∑𝑤𝑖𝑥𝑖 = 1) 

▪ 𝑎 = 𝑦̅ − 𝑏𝑥̅ 

o Note: 𝑆𝑥𝑦:= ∑((𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅))    →     𝑏 = 𝑆𝑥𝑦/𝑆𝑥𝑥 (inconvenient formulation…) 

▪ 𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥̅)2 

o Note: the regression line always passes through (𝑥̅, 𝑦̅). 

• LS coefficients estimation statistics: 

o 𝐸(𝑏) = ∑𝑤𝑖𝐸(𝑦𝑖) = 𝛼∑𝑤𝑖 + 𝛽∑𝑤𝑖𝑥𝑖 = 𝛽 (unbiased estimator) 

o 𝑉𝑎𝑟(𝑏) = ∑𝑤𝑖
2𝑉𝑎𝑟(𝑦𝑖) = 𝜎2∑𝑤𝑖

2 = 𝜎2/𝑆𝑥𝑥 

o ➔ 𝒃~𝑵(𝜷,𝝈𝟐/𝑺𝒙𝒙) 

o Note: b is most accurate when Sxx is maximal, which is achieved by choosing the xi to be 

as far as possible in the edges of dom(x). This is indeed the way to have accurate 

estimation of a line, but it prevent us from judging whether it’s indeed a line (i.e. whether 

the linear model is reasonable). 

o Similarly: 

▪ 𝒂~𝑵(𝜶, 𝝈𝟐
∑𝒙𝟐

𝑵𝑺𝒙𝒙
) 

▪ 𝑠2 =
∑𝑒𝑖

2

𝑁−2
,    

(𝑁−2)𝑠2

𝜎2
~𝜒2(𝑁 − 2) 

o 
𝛽̂−𝛽

𝜎𝛽̂̂
~𝑡𝑁−2 

▪ In particular for 𝑯𝟎: 𝜷 = 𝟎, one has: 
𝜷̂

𝝈 
√𝑺𝒙𝒙~𝒕𝑵−𝟐 

▪ This derives a regression test with the 𝛼-confidence interval: 

𝛽̂ − 𝑡
1−

𝛼
2

𝑁−2𝜎𝛽̂̂ ≤ 𝛽 ≤ 𝛽̂ + 𝑡
1−

𝛼
2

𝑁−2𝜎𝛽̂̂ 
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▪ Equivalently, 
𝛽̂2𝑆𝑥𝑥

𝜎̂2
~𝐹1,𝑁−2. 

• Prediction: 𝒚̂ = 𝑎 + 𝑏𝑥 ~ 𝑵(𝒚, 𝝈𝟐 (𝟏 +
𝟏

𝑵
+

(𝒙−𝒙̅)𝟐

𝑺𝒙𝒙
))     (under the linear regression model) 

o The error of 𝑦̂ consists of 3 terms: 

▪ Inherent noise in the model (1) 

▪ Error in the estimate of 𝛼 (1/N) – smaller for larger N 

▪ Error in the estimate of 𝛽 (
(𝑥−𝑥̅)2

𝑆𝑥𝑥
) – smaller for either larger N or x’s closer to 𝑥̅ 

o Note: unlike prediction (“what will be y for a certain x0?”) – which is affected directly by 

the noise 𝜎 – estimation of the expectation 𝐸[𝑦|𝑥0] (“what is the average y over the x=x0 

population?”) is affected by the noise only through the errors in the parameters 

estimates, thus such estimation will use the variance 𝜎2 (
1

𝑁
+

(𝑥−𝑥̅)2

𝑆𝑥𝑥
) (without the “1”). 

▪ In other words, significance interval for prediction is wider than significance 

interval for parameter estimation. 

• Analysis of Variance (ANOVA): 

o ∑𝑒𝑖
2 = 𝑆𝑦𝑦 + 𝛽̂2𝑆𝑥𝑥 − 2𝛽̂𝑆𝑥𝑦 = 𝑆𝑦𝑦 − 𝛽̂2𝑆𝑥𝑥 

o Equivalently, 𝑺𝒚𝒚 = 𝜷̂𝟐𝑺𝒙𝒙 + ∑𝒆𝒊
𝟐, i.e. the variance of Y (n-1 DFs) is partially explained by 

X (regression variance, 1 DF), and partially unexplained (residuals variance, n-2 DFs). 

o The part of Y which is explained by X: 𝑹𝟐 ≔
𝜷̂𝟐𝑺𝒙𝒙

𝑺𝒚𝒚
=

𝑺𝒙𝒚
𝟐

𝑺𝒙𝒙𝑺𝒚𝒚
 

▪ Note: the last formulation is symmetric between X & Y. 

o 𝐹 ≔
𝛽̂2𝑆𝑥𝑥

𝜎̂2
= (𝑁 − 2)

𝑅2

1−𝑅2
 ~ 𝐹1,𝑁−2 is a statistic useful for regression F-test. 

• Two regression lines – Y/X vs. X/Y: 

o 𝛽𝑦/𝑥 = 𝑆𝑥𝑦/𝑆𝑥𝑥 whereas 𝛽𝑥/𝑦 = 𝑆𝑥𝑦/𝑆𝑦𝑦. 

o 𝛽𝑦/𝑥 ⋅ 𝛽𝑥/𝑦 = 𝑅2 = 1 iff the regression lines are identical. 

o 𝛽𝑦/𝑥/𝛽𝑥/𝑦 = 𝑆𝑦𝑦/𝑆𝑥𝑥  = scales ratio 

• Correlation coefficient: 𝑅 ≔

𝑆𝑥𝑦

𝑁

√𝑆𝑥𝑥
𝑁
⋅
𝑆𝑦𝑦

𝑁

→
𝐶𝑜𝑣(𝑥,𝑦)

𝑉𝑎𝑟(𝑥)𝑉𝑎𝑟(𝑦)
= 𝜌 

o Note: 𝑅 is a consistent but biased estimator of 𝜌. 

o Note: 𝝆 = 𝟎  𝒊𝒇𝒇  𝜷 = 𝟎. 

• Scaling: 

o 𝜷̂𝒗𝒚/𝒖𝒙 =
𝒗

𝒖
𝜷̂𝒚/𝒙 

o 𝜶̂𝒗𝒚/𝒖𝒙 = 𝒗𝜶̂𝒚/𝒙 

o 𝑹𝒗𝒚/𝒖𝒙 = 𝒔𝒊𝒈𝒏(𝒖𝒗)𝑹𝒚/𝒙 

• Multi-regression: regression with multiple variables. 

o Note: a model containing non-linear powers of a variable can be linearized by referring to 

𝑋𝑝 as a new variable with linear relation to Y. 

• Terminology: 

o The linear regression model is asymmetric – all the errors are associated with Y (since 

we minimize vertical errors rather than geometrical distance of the samples from the 

line). 
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▪ That’s why the two regression lines differ unless 𝑅2 = 1. 

o Since a linear regression model explains (through X) only part of the variance of Y, then 

the dispersion of 𝒚̂ around the mean 𝒚̅ will always be smaller than the dispersion of the 

true 𝒚 – thus the model suggests a regression of the phenomenon of y towards its mean. 

o Algebraically: 𝑺𝒚̂𝒚̂ = 𝛽̂2𝑆𝑥𝑥 =
𝑆𝑥𝑦
2

𝑆𝑥𝑥
≤

𝑆𝑥𝑥𝑆𝑦𝑦

𝑆𝑥𝑥
= 𝑺𝒚𝒚. 

▪ 𝑹𝟐 = 𝟏   →    𝑦̂ = 𝑦 , 𝑆𝑥𝑦
2 = 𝑆𝑥𝑥𝑆𝑦𝑦    →    𝑆𝑦̂𝑦̂ = 𝑆𝑦𝑦 (full reconstruction) 

▪ 𝑹𝟐 = 𝟎   →    𝛽 = 0   →    𝑦̂ ≡ 𝑦̅ , 𝑆𝑦̂𝑦̂ = 0  (full regression to mean) 

o Historically 

Degrees of Freedom 
• The number of degrees of freedom of a dynamic system is the number of independent ways by 

which its input can move without violating any constraint imposed on it. 

o A dynamic system is not a statistical term, though, and the conversion to statistics is 

unclear. 

• A statistic is a function of data: 𝑺 = 𝒇({𝒙𝒊}𝒊=𝟏
𝒏 ) 

• A statistic is often defined as an estimator of an unknown parameter. 

• Degrees of freedom of an estimate is the number of independent pieces of information that 

went into calculating the estimate. 

o Which is of course an ambiguous definition, e.g. variance can be seen as ∑(𝑥𝑖 − 𝑥̅)2 (n), 

∑𝑡𝑖
2 + (∑𝑡𝑖)

2 (n-1) or just s (1) – all are calculations of independent elements… 

• Many statistics are commutative functions of the data (i.e. independent of the order, e.g. mean 

& variance). In addition, it is often assumed that the data samples are i.i.d. 

• Under such assumptions, the distribution of S depends on the distribution of each sample and 

on the number of data samples (n). 

• For additive statistic (e.g. 𝑆 = ∑𝑥𝑖  or 𝑆 = ∑𝑥𝑖
2), the distribution is typically wider as n is larger. It 

is said that the statistic has n degrees of freedom to vary and add to the statistic. 

• There are also statistics which are additive function of some variation of the input, e.g. 𝑆 =

∑(𝑥𝑖 − 𝑥̅)2. 

o Note: the input consists of n variables, but only n-1 of the additive terms are independent 

– the last one is determined deterministically by the sum of the others. It indeed turns 

out to narrow the distribution accordingly - ∑ (𝑥𝑖 − 𝑥̅)2𝑛
1  has the same distribution as 

∑ (𝑥𝑖 − 𝜇)2𝑛−1
1 . 

o However, this intuition is hard to formulate, and until now any case I saw of statistic 

whose distribution has certain “DFs”, required a dedicated formulation and mathematical 

proof. 

o Indeed, statistical DFs are most commonly associated with the distributions 𝑡, 𝐹, 𝜒2. 

• Note: statistical DFs are quite opposite to the intuition of modeling, in which the parameters are 

degrees of freedom of the model, and the data samples are the (weak) constraints. Here the data 

has DFs that “help” it to get complex, while we use models to constraint its variety. The residuals 

of the model always have less DFs to deviate from the model. 

o Actually, one separates model DFs from residuals DFs, and the sum is the data DFs. So 

there’s kind of symmetric perspective of the DFs. 

o In linear regression (with intercept), DF(model)=2 and DF(residuals)=n-2. 

http://blog.minitab.com/blog/statistics-and-quality-data-analysis/so-why-is-it-called-regression-anyway
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)#In_probability_distributions
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o In generalized or regularized linear models, effective DFs can be defined using the hat-

matrix (defined by 𝒚̂ = 𝑯𝒚), as DF(model)=tr(H). It can be seen as “how much the (Y) 

data can potentially affect the model predictions” (sum of influences of samples). 

o For example in ridge regression 𝜷̂ ≔ (𝑿𝑻𝑿+ 𝝀𝑰)
−𝟏
𝑿𝑻𝒚, thus DF=𝑡𝑟(𝑋(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇) 

which deviates down from 𝒎 as 𝝀 gets farther from 0 (m=#variables; it’s 1 for single-

input regression without intercept). 

o Bonus: regularization as a solution to ML problem: 

𝑷(𝒀, 𝒃|𝑿) = 𝑃(𝑏|𝑋)𝑃(𝑌|𝑏, 𝑋) ~ 𝑒−||𝑌−𝑋𝑏||
𝑝1/2𝜎𝑝1𝑒−||𝑏||

𝑝2/2𝜏𝑝2  

𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝑌, 𝑏|𝑋) = 𝑎𝑟𝑔𝑚𝑖𝑛(−𝑙𝑜𝑔𝑃) = 𝑎𝑟𝑔𝑚𝑖𝑛 (||𝑌 − 𝑋𝑏||
𝑝1
+
𝜎𝑝1

𝜏𝑝2
||𝑏||

𝑝2
) 

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑌,𝑏(||𝑌 − 𝑏𝑋||
𝑝1
+ 𝜆||𝑏||

𝑝2
)  (𝜆 =

𝜎𝑝1

𝜏𝑝2
=

𝑛𝑜𝑖𝑠𝑒

𝛽𝑠−𝑝𝑜𝑤𝑒𝑟
) 

• See also: DFs vs. complexity. 

 

https://en.wikipedia.org/wiki/Projection_matrix
https://en.wikipedia.org/wiki/Projection_matrix
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)#In_non-standard_regression
https://web.stanford.edu/~hastie/Papers/df_paper_LJrev6.pdf

