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Scope
+ Linear regression

+ Major concepts in supervised learning (validation, overfitting, etc.)
- No introduction of any other specific method
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Introduction to Supervised Learning
through Linear Regression

* What is the problem?

* How is it modeled?

* Why does it make sense?

* How to solve it?

* How can | validate what | did?

* Overfitting

* How can | do more with linear regression?



Supervised Learning Problem

* Goal: learn to predict from input x € R™ some output y € R* as
generalization from given data of N samples:

X = (x1..xy)" € RV Y=y ..yn)" € RV

* Linear Regression model:
Y =X +¢€
e Xis known input, Y is unknown (except for the training data) output

* 3 € R™ are the parameters of the model (AKA coefficients) that we need to learn

* ¢ is unmodeled noise/errors which is often assumed to be Normally-distributed &
independent over different data samples



Least Squares Solution

* Find f with “good fit” to the data X,Y under the model
* Good fit =» closer to the “true” model = better prediction of y given new x

* Fit is measured by Loss (/Cost) function Lg(X,Y)
* Often function of the error Lg = L(Y — Xf3)

* L,-loss: L=|Y—-Xp
* L,-loss: L=|lY-Xp
* L, loss: L=|lY-Xp

=2l = X, Bl
2 = Y(Y; — X;.)* (popular due to differentiability)
= max|Y; — X; B|

* Other example: Y = change of price =» Loss = if(sign(Y)=sign(XB)) 0 else |Y|

* Least squares: optimize L,-loss (argmin ||Y — XB]|5)

B



Statistical (Bayesian) Justification

Y=X[+¢€
 Assume €;~N (0, %) independently over i:
P(e) x l'[l-e“fiz/“2
 Maximum Likelihood:

L(BIX,Y) = P(Y|B,X) = P(e =Y — XB)

e’ > (Y; — X;.0)?
logL(ﬁ)=—ZiG—‘2=— (Y — X p)”

1 2
0-2 _ﬁlly_Xﬁllz

argmaxﬂ(log L(B)) = argminﬁ| Y — XB| ‘2



How to Apply Least Squares?

B=(X"X)" Xy

Seize the moment — it may be the last analytically-solved supervised model you'll
see for a while.

e “Units” of § are [y/x] as expected.

* Non-invertible XTX indicates degenerated X =» some variable is a combination
of others and can be removed without loss of information.

* Note: XTX € R™™ and XTY € R™ ¥ are sufficient statistics of 8§ whose size is
independent of the number of samples N.



Validation: how can | know that | did well?

e Statistical estimation

* Assigning range of values for each coefficient
* Non-significant f§ # 0 may indicate irrelevant input variables

* Assuming independent, normally and identically distributed errors

* Train group vs. test group
* Cross validation
* |n sequential data: sequential test groups



Overfitting

* Which model is more reasonable?
* Occam’s razor: simplicity should be prioritized

 What is simple?
* Low sensitivity of model to data

* Less Degrees of Freedom (AKA parameters, coefficients)
* Smaller values of parameters

e Bias-variance tradeoff

* How to reduce variance?
* Architecture: less parameters (in linear regression — less input variables)

 Regularization: force reduction of 3, e.g. by adding ||,[3|| to the loss function
* Lasso (L;-penalty), Ridge (L,-penalty)
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Getting more from Linear Regression
* Intercept: (1 . j;j)
* Weighted Leastmsauanpres

* Non-linear input
* E.8.y = Bo + P1x + Brx? + fax°



Summary

Linear Regression & Supervised Learning
| LincarRegressionand LeastSquares | Supervised Learning

Problem Use available data {(x;, y;)}\=; (x; € R™,y; € R¥) to learn to predict y from x in future data {x;};.
Model Linear regression model: Y = X + noise Y = Fg(X)
Goal Least squares:  argmin||Y — XB||5 argmin L(Y, F@(X))

B )

L may be defined as L, /L, /L, norm of the
errors |Y — Fg(X)|, or as something else.

Bayesian ML (Maximume-Likelihood) for Normal iid noise  Usually as fuzzy as the complexity of the model
justification
Learning B = XTx)"1xTy Numerical search methods (AKA optimization)

Validation » Statistical significance (strong assumptions)  Statistical significance is usually non-practical
» Test groups (sequentially / cross validation)

Avoid e Reduce input size In complex models, internal model’s DOF can
overfitting  * Penalty for large fs also be reduced

Non-linear  Non-linear input Built in the model — though input-engineering
models still tends to be helpful for learning!
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