Intro to Supervised Learning through the eyes of Linear Regression

Ido Greenberg

2018

Scope

- + Linear regression
- + Major concepts in supervised learning (validation, overfitting, etc.)
- No introduction of any other specific method

Introduction to Supervised Learning through Linear Regression

- What is the **problem**?
- How is it **modeled**?
- Why does it make sense?
- How to solve it?
- How can I validate what I did?
- Overfitting
- How can I do more with linear regression?

Supervised Learning Problem

• Goal: learn to predict from input $x \in R^m$ some output $y \in R^k$ as generalization from given data of N samples:

 $X = (x_1 \dots x_N)^T \in \mathbb{R}^{N \times m} \qquad Y = (y_1 \dots y_N)^T \in \mathbb{R}^{N \times k}$

• Linear Regression model:

$$Y = X\beta + \epsilon$$

- X is known input, Y is unknown (except for the training data) output
- $\beta \in \mathbb{R}^m$ are the parameters of the model (AKA coefficients) that we need to learn
- ϵ is unmodeled noise/errors which is often assumed to be Normally-distributed & independent over different data samples

Least Squares Solution

- Find β with "good fit" to the data X,Y under the model
 - Good fit → closer to the "true" model → better prediction of y given new x
- Fit is measured by Loss (/Cost) function $L_{\beta}(X, Y)$
 - Often function of the error $L_{\beta} = L(Y X\beta)$
 - L₁-loss: $L = ||Y X\beta||_1 = \sum |Y_i X_i \beta|$
 - **L**₂-loss: $L = ||Y X\beta||_2^2 = \sum (Y_i X_i \beta)^2$ (popular due to differentiability)
 - L_{inf}-loss: $L = ||Y X\beta||_{\infty} = \max|Y_i X_i\beta|$
 - Other example: Y = change of price \rightarrow Loss = if(sign(Y)=sign(X β)) 0 else |Y|
- Least squares: optimize L₂-loss ($\underset{\beta}{\operatorname{argmin}} ||Y X\beta||_2$)

Statistical (Bayesian) Justification

 $Y = X\beta + \epsilon$

- Assume $\epsilon_i \sim N(0, \sigma^2)$ independently over *i*: $P(\epsilon) \propto \prod_i e^{-\epsilon_i^2/\sigma^2}$
- Maximum Likelihood:

$$L(\beta|X,Y) \coloneqq P(Y|\beta,X) = P(\epsilon = Y - X\beta)$$

$$\log L(\beta) = -\sum_{i} \frac{\epsilon_i^2}{\sigma^2} = -\frac{\sum_{i} (Y_i - X_i \cdot \beta)^2}{\sigma^2} = -\frac{1}{\sigma^2} \left| |Y - X\beta| \right|_2^2$$

 $\operatorname{argmax}_{\beta}(\log L(\beta)) = \operatorname{argmin}_{\beta} ||Y - X\beta||_{2}$

How to Apply Least Squares?

$$\widehat{\boldsymbol{\beta}} \coloneqq \left(X^T X \right)^{-1} X^T Y$$

- Seize the moment it may be the last analytically-solved supervised model you'll see for a while.
- "Units" of $\hat{\beta}$ are [y/x] as expected.
- Non-invertible X^TX indicates degenerated X → some variable is a combination of others and can be removed without loss of information.
- Note: $X^T X \in \mathbb{R}^{m \times m}$ and $X^T Y \in \mathbb{R}^{m \times k}$ are sufficient statistics of β whose size is independent of the number of samples N.

Validation: how can I know that I did well?

- Statistical estimation
 - Assigning range of values for each coefficient
 - Non-significant $\beta \neq 0$ may indicate irrelevant input variables
 - Assuming **independent**, normally and identically distributed errors
- Train group vs. test group
 - Cross validation
 - In sequential data: sequential test groups

Overfitting

- Which model is more reasonable?
 - Occam's razor: simplicity should be prioritized
- What is *simple*?
 - Low sensitivity of model to data
 - Less Degrees of Freedom (AKA parameters, coefficients)
 - Smaller values of parameters
 - Bias-variance tradeoff
- How to reduce variance?
 - Architecture: less parameters (in linear regression less input variables)
 - **Regularization**: force reduction of β , e.g. by adding $||\beta||$ to the loss function
 - Lasso (L₁-penalty), Ridge (L₂-penalty)

Getting more from Linear Regression

- Intercept: $\begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}$
- Weighted Least Squares
- Non-linear input
 - E.g. $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$

Summary Linear Regression & Supervised Learning

	Linear Regression and Least Squares	Supervised Learning
Problem	Use available data $\{(x_i, y_i)\}_{i=1}^N (x_i \in \mathbb{R}^m, y_i \in \mathbb{R}^k)$	^{<i>x</i>}) to learn to predict y from x in future data $\{x_i\}_i$.
Model	Linear regression model: $Y = X\beta + noise$	$Y \approx F_{\Theta}(X)$
Goal	Least squares: $\underset{\beta}{\operatorname{argmin}} Y - X\beta _2^2$	$\underset{\Theta}{\operatorname{argmin}} L(Y, F_{\Theta}(X))$ L may be defined as $L_1/L_2/L_{\infty}$ norm of the errors $ Y - F_{\Theta}(X) $, or as something else.
Bayesian justification	ML (Maximum-Likelihood) for Normal iid noise	Usually as fuzzy as the complexity of the model
Learning	$\hat{\beta} \coloneqq (X^T X)^{-1} X^T y$	Numerical search methods (AKA optimization)
Validation	 Statistical significance (strong assumptions) Test groups (sequentially / cross validation) 	Statistical significance is usually non-practical
Avoid overfitting	 Reduce input size Penalty for large βs 	In complex models, internal model's DOF can also be reduced
Non-linear models	Non-linear input	Built in the model – though input-engineering still tends to be helpful for learning!