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Scope

+ Linear regression

+ Major concepts in supervised learning (validation, overfitting, etc.)

- No introduction of any other specific method
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Introduction to Supervised Learning
through Linear Regression
• What is the problem?

• How is it modeled?

• Why does it make sense?

• How to solve it?

• How can I validate what I did?

• Overfitting

• How can I do more with linear regression?
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Supervised Learning Problem

• Goal: learn to predict from input 𝑥 ∈ 𝑅𝑚 some output 𝑦 ∈ 𝑅𝑘 as 
generalization from given data of 𝑁 samples:

𝑋 = 𝑥1…𝑥𝑁
𝑇 ∈ 𝑅𝑁×𝑚 𝑌 = 𝑦1…𝑦𝑁

𝑇 ∈ 𝑅𝑁×𝑘

• Linear Regression model:
𝑌 = 𝑋𝛽 + 𝜖

• X is known input, Y is unknown (except for the training data) output

• 𝛽 ∈ 𝑅𝑚 are the parameters of the model (AKA coefficients) that we need to learn

• 𝜖 is unmodeled noise/errors which is often assumed to be Normally-distributed & 
independent over different data samples
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Least Squares Solution

• Find 𝛽 with “good fit” to the data X,Y under the model
• Good fit ➔ closer to the “true” model ➔ better prediction of y given new x

• Fit is measured by Loss (/Cost) function 𝑳𝜷 𝑿, 𝒀
• Often function of the error 𝐿𝛽 = 𝐿 𝑌 − 𝑋𝛽

• L1-loss: 𝐿 = 𝑌 − 𝑋𝛽
1
= ∑ 𝑌𝑖 − 𝑋𝑖⋅𝛽

• L2-loss: 𝐿 = 𝑌 − 𝑋𝛽
2

2
= ∑ 𝑌𝑖 − 𝑋𝑖⋅𝛽

2 (popular due to differentiability)

• Linf-loss: 𝐿 = 𝑌 − 𝑋𝛽
∞
= max 𝑌𝑖 − 𝑋𝑖⋅𝛽

• Other example: Y = change of price ➔ Loss = if(sign(Y)=sign(X𝛽)) 0 else |Y|

• Least squares: optimize L2-loss (𝐚𝐫𝐠𝐦𝐢𝐧
𝜷

||𝒀 − 𝑿𝜷||𝟐)
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Statistical (Bayesian) Justification

𝑌 = 𝑋𝛽 + 𝜖

• Assume 𝜖𝑖~𝑁 0, 𝜎2 independently over 𝑖:

𝑃 𝜖 ∝ Π𝑖𝑒
−𝜖𝑖

2/𝜎2

• Maximum Likelihood:

𝐿 𝛽|𝑋, 𝑌 ≔ 𝑃 𝑌|𝛽, 𝑋 = 𝑃(𝜖 = 𝑌 − 𝑋𝛽)

log 𝐿 𝛽 = −Σi
𝜖𝑖
2

𝜎2
= −

Σ𝑖 𝑌𝑖 − 𝑋𝑖⋅𝛽
2

𝜎2
= −

1

𝜎2
𝑌 − 𝑋𝛽

2

2

𝐚𝐫𝐠𝐦𝐚𝐱𝜷 𝐥𝐨𝐠 𝑳 𝜷 = 𝐚𝐫𝐠𝐦𝐢𝐧𝜷 𝒀 − 𝑿𝜷
𝟐
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How to Apply Least Squares?

෡𝜷 ≔ 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀

• Seize the moment – it may be the last analytically-solved supervised model you’ll
see for a while.

• “Units” of መ𝛽 are [𝑦/𝑥] as expected.

• Non-invertible 𝑋𝑇𝑋 indicates degenerated 𝑋 ➔ some variable is a combination
of others and can be removed without loss of information.

• Note: 𝑿𝑻𝑿 ∈ 𝑹𝒎×𝒎 and 𝑿𝑻𝒀 ∈ 𝑹𝒎×𝒌 are sufficient statistics of 𝜷 whose size is 
independent of the number of samples 𝑵.
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Validation: how can I know that I did well?

• Statistical estimation
• Assigning range of values for each coefficient

• Non-significant 𝛽 ≠ 0 may indicate irrelevant input variables

• Assuming independent, normally and identically distributed errors

• Train group vs. test group
• Cross validation

• In sequential data: sequential test groups
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Overfitting

• Which model is more reasonable?
• Occam’s razor: simplicity should be prioritized

• What is simple?
• Low sensitivity of model to data

• Less Degrees of Freedom (AKA parameters, coefficients)

• Smaller values of parameters

• Bias-variance tradeoff

• How to reduce variance?
• Architecture: less parameters (in linear regression – less input variables)

• Regularization: force reduction of 𝛽, e.g. by adding 𝛽 to the loss function
• Lasso (L1-penalty), Ridge (L2-penalty)
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Getting more from Linear Regression

• Intercept:

• Weighted Least Squares

• Non-linear input
• E.g. 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥

2 + 𝛽3𝑥
3
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Summary
Linear Regression & Supervised Learning

Linear Regression and Least Squares Supervised Learning

Problem Use available data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁 (𝑥𝑖 ∈ 𝑅𝑚, 𝑦𝑖 ∈ 𝑅𝑘) to learn to predict y from x in future data 𝑥𝑖 𝑖.

Model Linear regression model:     𝑌 = 𝑋𝛽 + 𝑛𝑜𝑖𝑠𝑒 𝑌 ≈ 𝐹Θ 𝑋

Goal Least squares:      argmin
𝛽

|𝑌 − 𝑋𝛽 |2
2 argmin

Θ
𝐿 𝑌, 𝐹Θ 𝑋

L may be defined as 𝐿1/𝐿2/𝐿∞ norm of the 
errors |𝑌 − 𝐹Θ 𝑋 |, or as something else.

Bayesian 
justification

ML (Maximum-Likelihood) for Normal iid noise Usually as fuzzy as the complexity of the model

Learning መ𝛽 ≔ 𝑋𝑇𝑋 −1𝑋𝑇𝑦 Numerical search methods (AKA optimization)

Validation • Statistical significance (strong assumptions)
• Test groups (sequentially / cross validation)

Statistical significance is usually non-practical

Avoid 
overfitting

• Reduce input size
• Penalty for large 𝛽s

In complex models, internal model’s DOF can 
also be reduced

Non-linear 
models

Non-linear input Built in the model – though input-engineering 
still tends to be helpful for learning!
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