
Ido Greenberg 2016

1

UDACITY

Artificial Intelligence

Contents
PART I: FUNDUMENTALS OF AI ... 2

Welcome.. 2

Problem solving ... 2

Probability in AI ... 4

Probabilistic inference ... 5

Machine learning ... 7

Unsupervised learning ... 11

Representation with Logic ... 16

Planning ... 17

Planning under Uncertainty .. 19

Reinforcement learning ... 21

Hidden Markov Models and Filters ... 25

Summarizing Table .. 27

PART II: APPLICATIONS OF AI .. 30

Games .. 30

Game Theory ... 32

Advanced Planning .. 34

Computer Vision .. 35

Robotics ... 39

Natural Language Processing .. 41

Q&A ... 47

Skill: 2/3

Time: 4 months

Prerequisites: probability theory and linear algebra.

Instructors: Peter Norvig (Google) and Sebastian Thrun (Stanford, Google).

Summarized by Ido Greenberg, 2016.

Ido Greenberg 2016

2

PART I: FUNDUMENTALS OF AI

Welcome
1. Applications: finance, robotics, games, medicine, web…

2. “Intelligent Agent” interacts with “Environment”

3. Input is received through sensors, output sent through activators

4. Problems have the following characteristics:

a. Fully/partially observable

b. deterministic/stochastic

c. discrete/continuous

d. benign/adversarial (without or with opponent)

Problem solving

Problem definition
1. A problem is defined by:

a. A set of states 𝑆

b. Initial state 𝑠0

c. Actions allowed for every state {𝑎𝑖
𝑠}𝑠∈𝑆

d. Result function 𝑟: 𝑆 × 𝐴 → 𝑆

e. Goal test function 𝑔: 𝑆 → {𝑇, 𝐹}

f. Step cost function 𝑐: 𝑆 × 𝐴 × 𝑆 → 𝑅

g. Path cost function 𝐶(𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑠𝑛) = ∑𝑐(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1)

2. Graph zones: explored / frontier / unexplored

3. Problem implementation:

a. The explored states can be represented by a set (hash table or tree), to allow

membership test (has the state been explored yet?).

b. The frontier states can be represented by a priority queue (which is the state

from which to spread next?). It should be represented as a set as well (to allow

membership test).

c. The explored paths can be represented by a list of nodes, each containing 4

fields: final state; action led to that final state; total cost; and pointer to the

same path without the final state (“parent”).

Ido Greenberg 2016

3

Graph search algorithms

Search
algorithm

Description
Optimal (finds the best

path)
Complete

Frontier size
(derives
memory
usage)

Breadth-
first

Next vertex =
fewer steps from
origin

Yes: searching until all
frontier is more
expensive than the
solution found

Yes: if the best path is
of length n, then
there’s finite number
of paths shorter than n,
then the optimal one
will be found.

Number of
vertices of
distance n
from the
origin (may
be O(e^n))

Cheapest-
first

Next vertex =
smaller aggregate
cost from origin

The course says yes,
though I can design an
infinite tree with costs
½,1/4,1/8…, where the
correct path is of cost
1, and will not be
found.

A*

Next vertex =
smaller
[aggregate cost
from origin +
estimated
distance from
destination]

Yes if distance
estimation is never
pessimistic (otherwise
we may give up on
beneficial states); better
estimation => shorter
(more efficient) search

Yes, same as Breadth-
first

Depth-
first

Next vertex = go
deeper if
possible,
otherwise go
back and try
another direction

No: searching until
finding any solution

No: infinite search tree
may prevent arriving to
the correct path.
However, if the tree is
finite and the
destination is very
deep in the tree, then
DFS may reach it faster
than BFS.

All the
current path
is kept –
O(n)

1. A* distance admissible heuristic: the optimistic heuristic is intended to save time by

preventing looking at irrelevant states and paths (e.g. those which get us too far from the

destination). Such heuristics may be generated by omitting constraints and solving a

simplified optimization problem, yielding optimistic solutions.

2. Problem solving by graph search is possible when the states domain is:

a. Fully observable

b. Known

c. Discrete

d. Deterministic

e. Static

Ido Greenberg 2016

4

Probability in AI
Bayes rule

1. Bayes rule along with all the professional terms:

2. Note that the denominator can be computed by the total probability formula.

3. The denominator may also be deduced from simple normalization, if we have both

𝑃(𝐵|𝐴)𝑃(𝐴) and 𝑃(𝐵|! 𝐴)𝑃(! 𝐴).

Bayesian Network

1. Bayesian network: probabilistic graphical model representing random variables with

conditional dependencies.

2. The distribution of a variable is determined by the values of its parent nodes.

3. Given 𝑛 k-nary parents (i.e. with k possible values each), a node would be defined by 𝑘𝑛

distributions – one for each combination of the parents’ values. The joint distribution of

𝑁 k-nary variables is determined by ∑ (𝒌 − 𝟏)𝒌𝒏𝒊𝑵
𝒊=𝟏 parameters, where 𝑥𝑖 has 𝑛𝑖

parents; while there are 2𝑁 states.

4. In the example of the car failure analysis, there are ~65K possible combinations of binary

variables. Bayesian network reduced the number of specified probabilities to 47, so these

networks can compactly keep a lot of information.

5. D-separation: two nodes may be either dependent or independent, depending on which

other values of nodes in the network are known. The dependence can be tested by terms

of nodes triplets, where active triplets “pass” the dependence from the first node to the

last one, as demonstrated in the following chart:

Ido Greenberg 2016

5

6. In other words, dependence exists for any of the following:

a. There’s direct distribution influence.

b. There’s indirect distribution influence through unknown variables.

c. There’s common unknown parent node influencing both.

d. There’s common known child node influenced by both.

Probabilistic inference
1. Note: the following inferences and sampling methods make sense in variant cases when

the sampled population is available in different ways. For example:

a. Sometimes we control the independent variables and sometimes not.

b. Sometimes we can measure only the individual probability of a variable Y and

sometimes only its conditional probabilities wrt different X’s, etc.

Unfortunately, that’s hardly explained or demonstrated in the lecture.

2. Enumeration:

a. Estimate the probability of 𝑌 = 𝑦 by summation over the probabilities of all the

states that satisfy this equality, i.e. 𝑃(𝑌 = 𝑦) = ∑ 𝑃 ({𝑋𝑗 = 𝑥𝑖𝑗
}

𝑗
 𝑎𝑛𝑑 𝑌 =𝑖1,…,𝑖𝑛

𝑦), where 𝑥𝑖𝑗
 is the j'th possible value of the i'th variable (assuming it's discrete).

b. Such enumeration requires summation over all 2^n states of n binary variables,

for example. To speed up enumeration, we can exploit the direct dependencies

between the variables. For example, if 𝑋𝑖 determines the distribution of 𝑋𝑖+1 (and

the dist' of 𝑋1 is known), then we can calculate the distribution of 𝑋𝑖 by induction,

using only 2n calculations rather than 2^n. This is called Variables Elimination,

since in each step we practically unite 𝑋𝑖 and 𝑋𝑖+1 into one variable.

3. Approximate inference:

a. Sampling: a distribution can be approximated by just sampling it (simulate the

process and measure all variables, like in Monte-Carlo simulation).

Ido Greenberg 2016

6

b. Sampling allows estimation of either the complete joint probability distribution

𝑃(𝑋, 𝑌) or an individual variable distribution 𝑃(𝑌), making the method

consistent.

c. It also allows approximating a conditional distribution given other variable value

𝑃(𝑌|𝑋 = 𝑥), by using only the samples satisfying 𝑋 = 𝑥. This is called Rejection

Sampling, since we reject irrelevant samples.

4. Likelihood weighting:

a. Rejection sampling is inefficient when most samples are irrelevant (e.g. if we tried

to measure the weather given that today a war begins, then we would reject

years of samples and keep only a few relevant days).

b. Instead, we can sample only relevant samples (e.g. only the days when a war was

opened) and keep all of them.

c. If we use this method to compute both 𝑃(𝑌|𝑋 = 𝑥) and 𝑃(𝑌|𝑋 ≠ 𝑥), then we

can approximate 𝑃(𝑌) consistently by 𝑃(𝑌) = 𝑃(𝑋 = 𝑥) ∙ 𝑃(𝑌|𝑋 = 𝑥) + 𝑃(𝑋 ≠

𝑥) ∙ 𝑃(𝑌|𝑋 ≠ 𝑥). This is called likelihood weighting, since we assign weight to

each conditional probability distribution.

5. Gibbs sampling:

a. Sampling method intended to be more efficient when desired values of

conditioning variables are rare (i.e. for measuring 𝑃(𝑌|𝑋 = 𝑥) where 𝑃(𝑋 = 𝑥)

is small). The idea [Berkman] is to find one such sample, then look for more

samples in the same local parameters range, assuming there is higher probability

to find X=x in this parametric neighborhood, and assuming the sampling

mechanism allows us to control where we look (for example if one of the variables

is a location in the world to measure, we can sample the locations in which X=x is

more probable). However, this is not explained so well in the lecture.

b. Gibbs sampling is usually implemented by Markov Chain Monte Carlo (MCMC).

c. We begin with a certain sample of all the variables. Then, for each generation,

we sample (once? multiple times?) one of the variables given the current values

of the other variables, then change the value of this variable and go on to the next

generation. This way, in each generation we change (exactly? at most?) one value

among the variables.

d. Although the samples clearly depend on each other (each one is almost identical

to the former), this sampling method turns out to be consistent, i.e. to

asymptotically yield the correct complete joint distribution.

Ido Greenberg 2016

7

Machine learning
1. Buzz buzz buzz – machine learning does everything etc. autonomic car uses machine

learning etc.

2. Goal definition:

a. Supervised – learn data telling us the desired output

b. Unsupervised – make sense in data without required output

c. Reinforcement – learn by feedback from environment (as in some genetic

algorithms)

Supervised learning
1. Find function 𝑓(𝑥) = 𝑦 that fits given data {𝑥𝑖, 𝑦𝑖}𝑖, in a way that allows generalization of

the prediction function 𝑓 to new data as well.

2. Occam’s (Okham’s) Razor: choose the less complex hypothesis.

3. In practice, there’s tradeoff between fit and complexity. The goal is to find the complexity

minimizing the generalization error:

4. Overfitting may be very hazardous. For example:

a. 10 points {(𝑥𝑖, 𝑦𝑖)} around a line should be approximated by line rather than 10-

degree polynomial.

b. Assume that we classify SPAM according to frequency of keywords (using Naive

Bayes model which assumes independent occurrences), and that one arbitrary

word has never occurred in spam messages yet. Then every new message

containing this word will be classified as HAM (non-spam), which is clearly

overfitting.

5. The general approach to overfitting prevention, is to reduce the sensitivity of the model’s

parameters to the training data – through either model design, data manipulation or Loss

measuring.

a. In particular, complex models (many degrees of freedom) have higher tendency

to overfitting, since it is more probable to have a combination of parameters that

“happens” to fit the training data without solving the essential problem of finding

a true pattern. That’s the case in the 10-degree polynomial.

6. Laplace smoothing: when dividing data into classes and counting the occurrences of

samples belonging to each class – add 𝐾 to the count of every class.

a. In other words, we take weighted average of the data distribution with unite

distribution.

Ido Greenberg 2016

8

b. It prevents 0-counters which are dominant in calculations.

c. The fit error derived from this smoothness becomes smaller as the number of

samples satisfies 𝑁 ≫ 𝐾.

7. SPAM filtering: the naive Bayes model described above practically doesn’t work for

intelligent spammers, so more advanced heuristics are used: known spamming IP, person

previously contacted, similar emails for many addressee, capital letters, consistent links

texts and URLs, using the name of the addressee…

8. Digit recognition:

a. From 16x16 images of hand-written digits to the corresponding digit.

b. Main challenge in input representation is high sensitivity of the image to shifting.

It can be partially solved by convolution with smoothing function.

c. Naive Bayes is not so good here since it assumes independence between input

entries (pixels), but we will use it here for studying.

9. Overfitting prevention:

a. Occam’s razor implemented by Laplace smoothing with parameter 𝐾 – see above.

𝐾, as hyper-parameters in general, can be chosen to minimize generalization

error, by using Cross Validation data.

b. The convention is 80% train data (determine parameters by fitting), 10% CV data

(tune hyper-parameters for small generalization error), and 10% test data (not

involved in the learning process – used only once in the end, otherwise there may

be hidden overfitting).

10. Regression:

a. Continuous output values, opposed to discrete labels of classification.

b. Linear regression is of the form 𝑍 = 𝑓(𝑋) = 𝑊1 ∙ 𝑋 + 𝑊0.

c. Goal: minimize the Loss function wrt data, which is the 𝐿2 norm of the errors 𝑌 −

𝑓(𝑋). For linear regression, minimization gives (by
𝜕𝐿

𝜕𝑊0
= 0,

𝜕𝐿

𝜕𝑊1
= 0):

i. 𝑊0 =
1

𝑀
∑𝑦𝑖 −

𝑊1

𝑀
∑𝑥𝑖 (M is the number of training samples)

ii. 𝑊1 =
𝑀∑𝑥𝑖𝑦𝑖−∑𝑥𝑖∑𝑦𝑖

𝑀∑𝑥𝑖
2−(∑𝑥𝑖)2

d. Logistic regression: 𝑍 =
1

1+𝑒𝑓(𝑋) ∈ (0,1)

11. Regularization: add complexity penalty to the loss function: L = Loss(data fit) +

Loss(parameters). Usually It’s just 𝐿𝑃 norm of the parameters.

12. Gradient descent: start at some point in the parametric space, and do iterative small steps

against the gradient of the loss (Θ ≔ Θ − 𝑟
𝜕𝐿

𝜕Θ
), to gradually reduce the loss. Can

numerically find local minimum. Finding the global minimum is tricky and can be studied

in Optimization Theory.

13. Perceptron: implementation of linear classification, invented in the 40’s. The perceptron

is a linear separator used to separate 2 classes of samples.

a. It is computed by Gradient Descent wrt corresponding loss function, giving 𝑤𝑖 ≔

𝑤𝑖 + 𝑟 (𝑦𝑗 − 𝑓(𝑥𝑗)). It converges iff the data is linearly-separable, then it

converges to a linear separator.

b. Online GD is typically used, i.e. every iteration uses only a batch of samples,

possibly new ones.

Ido Greenberg 2016

9

c. Margin of linear separator = its distance to the closest sample. Perceptron does

not deal with maximizing the margin. Most popular tools to achieve maximum

margin are Support Vector Machines (SVM) and Boosting, which are out of the

scope of the course.

d. Briefly, the trick is to add fictive new coordinates (features) to the data 𝑥𝑛+𝑘 =

𝑓𝑘(𝑥1, … , 𝑥𝑛), allowing linear separation between the different classes. For

example, in the classic 2 circles separation (𝑥1
𝑖 2

+ 𝑥2
𝑖 2

< 𝑅2 vs. 𝑥1
𝑖 2

+ 𝑥2
𝑖 2

> 𝑅2),

the 3rd coordinate can be 𝑥3 ≔ √𝑥1
2 + 𝑥2

2. In SVMs, large new feature spaces can

be generated by something named Kernel, which implicitly represent them

without actually computing them.

14. K-nearest neighbors (KNN): non-parametric machine learning method!

a. Learning: just memorize all training data.

b. Predicting: just find the K nearest neighbors, and choose the majority class label

among them.

c. Assumes local continuity – if many neighbors are of class Y, then so is the new

sample.

d. In all the parametric methods, the number of parameters is inherently

independent on the size of the data. In non-parametric methods, the number of

“parameters” can grow with the data. In KNN, the “parameters” are actually the

whole training data.

e. As in Laplacian smoothing (see above), 𝐾 here is practically the smoothing

parameter, or the regularizer. Higher 𝐾 derives smoother classification borders,

though it allows more outliers, i.e. training samples located in the zone of the

wrong class (which may be either good or bad, depending on the problem).

f. Problem I: large data sets make search long. Organizing data in kDD-trees allow

logarithmic search.

g. Problem II: too many input dimensions make the feature spaces too sparse, since

to keep the density of the samples, their number should increase exponentially

with the dimensions. Thus KNN is typically used only for input of few dimensions,

and collapses for 20+ dimensions.

Supervised Learning Algorithms

Goal Method Typical learning
Common

regularization
Parametric

Regression
Linear regression

Minimize loss
analytically Complexity penalty

in loss function

Yes

Logistic regression Minimize loss by GD

Classification

Naive Bayes
Learn “atomic”

probabilities empirically
Laplace smoothing

Linear
separation

Perceptron
~GD (what do we

minimize exactly?)

Maximizing
margins

SVM ?

Boosting ?

K-nearest neighbors
(KNN)

Memorize training data
Use many neighbors

(𝐾)
No

Ido Greenberg 2016

10

Ido Greenberg 2016

11

Unsupervised learning
1. “Find structure in data”. For example: data organized in 2 limited zones in 𝑅2 (allowing

clustering); or data organized along 1 line in 𝑅2 (allowing dimensionality reduction).

2. Problem definition:

a. Input: iid data samples

b. Goal: estimate the density probability distribution of the data

3. Blind signal separation: advanced unsupervised learning task, and a special case of factor

analysis. A signal consisting of the sum of 2 signals needs to be separated (e.g. 2 voices

speaking together).

4. Learning new concepts: for example, identify object in Google street view and separate

them to clusters (cars, trees, signs…). That’s an unsolved problem.

5. Unsupervised learning is very important since nowadays we can easily have tons of data,

but it is difficult to get good labels of these data (required for supervised learning).

6. Very modern algorithms do both unsupervised and supervised learning (self-supervised

or semi-supervised), e.g. by producing labels and applying them.

Clustering
1. K-Means clustering:

a. Goal: find the 𝐾 points which best correspond to center of clusters of the data.

b. Algorithm: pick K random points in the space, then iteratively until convergence:

i. Associate every data sample to the currently closest data center, yielding

temporary clustering of the data.

ii. Re-define the K data centers to be the centers (i.e. minimizers of 𝐿2

distances) of the temporary clusters.

c. Converges to locally optimal clustering. Global optimization is NP-hard.

d. Problems:

i. Local minima may prevent correct optimization.

ii. High dimensionality derives too sparse feature space (as in KNN).

iii. Lack of mathematical basis (“you might not care…, but for the sake of this

class, let’s just care about it”).

2. Gaussian learning (background for EM):

a. Multi-variate Gaussian:

𝑓(𝑥) = (2𝜋)−𝑁/2|Σ|−1/2 exp (−
1

2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇))

Ido Greenberg 2016

12

b. Gaussian learning: what is the best Gaussian fitting the data (i.e. maximizing the

likelihood of the data)?

c. 1D: mean=𝜇 ≔average; variance=𝜎2 ≔average quadratic deviation (proven by

log-likelihood maximization:
𝜕 log(𝑃(𝑥1…𝑥𝑀|𝜇,𝜎))

𝜕𝜇,𝜎
= 0).

d. N-D: generalized formula…

3. Expectation Maximization (EM):

a. Generalization of K-means, based on actual probability distribution and

probability theory basis.

b. The difference wrt K-means is that the assignments to classes are “soft” rather

than “hard”, i.e. we find the relative correspondence to each class rather than

choosing the most corresponding one.

c. We assume that the data consist of sum of multi-variate Gaussians (Gaussian

Mixture), and find the correspondence of every sample to every Gaussian.

d. Initialization: pick 𝐾 random Gaussians centers (𝜇𝑖), deviations (Σ𝑖) and sizes (or

priors, 𝜋𝑖).

e. E-step: given the Gaussians parameters, compute the likelihood of every sample

𝑗 to belong to every Gaussian 𝑖:

𝑒𝑖𝑗 = 𝜋𝑖

1

(2𝜋)𝑁/2|Σi|
exp (−

1

2
(𝑥𝑗 − 𝜇𝑖)

𝑇
Σ𝑖

−1(𝑥𝑗 − 𝜇𝑖))

(up to normalization over all j’s)

f. M-step: given the samples and their correspondence to the Gaussians, find the

best Gaussians parameters:

𝜋𝑖 =
1

𝑀
∑ 𝑒𝑖𝑗

𝑗

𝜇𝑖 =
1

∑ 𝑒𝑖𝑗𝑗
∑ 𝑒𝑖𝑗𝑗 𝑥𝑗 (weighted average of the samples 𝑥𝑗)

Σ𝑖 =
1

∑ 𝑒𝑖𝑗𝑗
∑ 𝑒𝑖𝑗(𝑥𝑗 − 𝜇𝑖)

𝑇
(𝑥𝑗 − 𝜇𝑖)

𝑗

g. EM converges to local maximum of the likelihood 𝑃(𝑥𝑗|𝜋, 𝜇, Σ), or equivalently,

to local minimum of the negative log-likelihood − ∑ log 𝑃(𝑥𝑗|𝜋, 𝜇, Σ)𝑗 , which is

more convenient for computations.

4. Choose 𝐾 in EM:

a. Usually we don’t know the number of clusters in advance, thus we need to check

that we don’t have either missing clusters (i.e. some domain of samples is poorly

covered) or spare clusters.

b. The popular method is to guess some 𝐾, then iteratively:

i. Run EM.

Ido Greenberg 2016

13

ii. Using the cost function − ∑ log 𝑃(𝑥𝑗|𝜋, 𝜇, Σ, 𝐾)𝑗 + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑐𝑜𝑠𝑡 ∙ 𝐾

(likelihood vs. cluster cost), check if there are unnecessary clusters (that

without them the cost function becomes cheaper) and remove them.

iii. If there are samples which are poorly covered (i.e. have some middle

ground likelihoods), then add new random classes centers near these

locations.

c. This method overcomes local minima which utilize the K clusters poorly, since it

identifies unnecessary clusters and can remove and restart their locations

randomly.

Clustering Algorithms (both intended for clusters concentrated around some centers)

Algorithm Convergence
Mathematical
justification

Dealing with local minima

K-Means

Yes

- -

Expectation Maximization
(EM)

Locally maximizing
likelihood

K estimation trick also
partially overcomes local

minima

Dimensionality reduction
1. Many data sets use more dimensions than needed. For example, faces in 50x50 images

can be represented by much less than 2500 coordinates (we know, for example, that

those coordinates allow representations of images of many other objects). In the example

of faces, a compact representation would use Eigen-faces linear basis of around 12 basic

faces, which are surprisingly enough to reconstruct a face.

2. This unit deals with linear dimensionality reduction only.

3. The main idea is to identify the directions of high variance, keep them only, and project

the data onto them.

4. Technically, this is implemented as follows:

a. Fit Gaussian to the data

b. Compute the eigenvectors of the Gaussian (i.e. of Σ)

Ido Greenberg 2016

14

c. Choose leading eigenvectors (by eigenvalues)

d. Project data onto the chosen eigenvectors space

5. Sounds like PCA, although the name is not mentioned.

6. Scan example:

a. Data are scans of people’s bodies (“body formations space”). The scan finds the

surface of the body.

b. The goal is to identify physiques (e.g. thick, tall etc.) and postures (e.g. standing,

throwing etc.).

c. Linear eigenvector decomposition finds that low linear subspace can express

much such information. For instance, 3 dimensions can express variant thickness,

height, weight and gender.

d. The lecturer did it using a method named SCAPE (Shape Completion and

Animation of People).

e. Applications:

i. Scanning completion (when partial or corrupted)

ii. Motion animation

iii. Bodies simulations

7. Non-linear dimensionality reduction methods:

a. Piece-wise linear projection: divide samples into clusters (e.g. by K-means), then

project every cluster on its own linear subspace.

b. Local linear embedding (LLE) (sounds like the same as above)

c. Isomap

8. Spectral clustering:

a. When a cluster is not concentrated around some center (e.g. the samples lay on

the edge of some shape), K-means and EM may fail finding the clusters.

b. Spectral clustering uses Affinity Matrix to measure the similarity between every

pair of points: 𝐴 ∈ 𝑅𝑀×𝑀, 𝐴𝑖𝑗 decreases with |𝑥𝑖 − 𝑥𝑗|.

c. The affinity matrix can be easily decomposed by PCA. Every dominant eigenvector

represents a cluster, and every dominant entry in the eigenvector corresponds to

a sample belonging to the cluster.

Ido Greenberg 2016

15

9. In summary:

a. Linear dimensionality reduction can be implemented using the eigenvectors of

the covariance matrix Σ of the Gaussian fit (PCA?).

b. Non-linear reduction can be implemented using modern methods such as LLE

and Isomap.

c. Clustering which identifies affinity (continuity) of data samples can be

implemented by spectral clustering.

Ido Greenberg 2016

16

Representation with Logic
The idea is to use the tools of logic (in particular first order logic) to model the world by compact

representation.

Propositional logic
1. Binary variables (symbols) – either T or F (non probabilistic).

2. Model = assignment of Boolean values to the variables.

3. Truth tables – the basic rules of logic: definition of and/or/not/implying/equivalence.

4. Given axioms (sentences assumed to be true), every variable value is T, F or unknown (as

said before, no probabilistic terms).

5. Sentences may be valid (true for every model), satisfiable (true for some model) or

unsatisfiable (false for every model).

6. The main strength of propositional logic is to identify sentences which are logically valid

or unsatisfiable, independently of the assumptions (model).

7. Limitations of propositional logic:

a. Uncertainty – no probabilistic terms

b. Objects – no objects, properties or relationships – only sentences (like in non-

OOP)

c. Shortcuts – no compact tools to represent general sentences such as "all the kids

are short" – we need to say it for every one by itself…

First Order Logic
1. Deals with limitations b & c of propositional logic (see above), by defining objects and

general statements.

2. The advanced representation of objects is demonstrated in the table:

Theory World representation Beliefs

First Order logic
Structured representation: Relations, Objects

(variables & constants), Functions
T/F/?

Propositional Logic
Factored representation: statements combining

atomic representations by logic gates

Probability Theory
Atomic representation: just different states which

may either be satisfied or not
[0,1]

3. The shortcuts are allowed by the advanced syntax, including:

a. Atomic sentences (expressing relations between objects)

b. Operators combining sentences

c. Quantifiers (all, exist) allowing general phrases

Ido Greenberg 2016

17

Planning

Background: planning in stochastic and partially observable world
1. AI – creating an agent which performs actions according to the situation ➔ planning is

the core of that.

2. Problem solving (section 2, e.g. A*) is good for deterministic & fully observable problems:

a. It uses planning and executing, where the execution is "blind", i.e. doesn’t get

feedback from the environment and doesn’t update the plan.

b. Nice experiment showed that people don’t manage to walk in straight line

without feedback from the environment.

3. Properties of real problems (some of them seem mathematically equivalent):

a. Stochastic – the results of an action may be non-deterministic by terms of the

plan (e.g. drive straight somewhere should depend on the light in the traffic light,

which is not part of the model of the world used for planning, thus may yield

unexpected results).

b. Multi agent – other agents take actions as well.

c. Partial observability – for example a certain road may be closed and it may be

announced in a sign before the road, i.e. not known in advanced.

d. Unknown – e.g. incomplete map or inaccurate GPS.

e. Hierarchical – the plan cannot include steps like "push the gas" but only high level

instructions, so low level actions should be determined interactively.

4. This section:

a. Goal: problem solving – i.e. decide whether a problem is solvable and find a plan

to solve it – in stochastic and partially observable world.

b. Limits (next section): no distinguish between probable and improbable situations.

Belief state space
1. States are replaced by sets of states (same idea as Non-Deterministic Automats). A set

contains all the currently-possible states. The exact state is unknown in case of partial

observability (e.g. local observability).

2. Goal: reach a subset of goal states.

3. We need to reduce the set of states accordingly.

4. Actions may have variant effects on states subset size:

a. Reduce the size if different input states are mapped into the same output states.

b. Reduce the size through observations which remove false states. Observations

are represented by nodes (in addition to the standard decision/action nodes), and

the agent does not control the output of these nodes.

c. Increase the size if the action is stochastic, i.e. one input state may have variant

output states.

5. In stochastic world, sometimes no classic plan can solve the problem. For example, if we

wish to get to the right, but every right move may fail and remain in the same place, then

no sequence of right moves guarantees actually getting to the right. Thus new notion of

plan is required.

Ido Greenberg 2016

18

6. Infinite sequence of actions can be defined by conditioned actions based on observations.

In the last example, it can be "[(move right) while (location is left)]". This notion adds

branches to every plan (in addition to the branches in the decision tree, which decide

between plans).

7. A plan is successful iff all the leafs in the plan tree are goal states.

8. A solution is bounded in time iff its tree has no loops.

9. Compact representation of belief states (i.e. sets of states) can be used by descriptive

variables. For example, if the world is defined by 4 binary variables, sometimes a set of 8

states (out of the possible 16) can be described just by the value of one of those variables.

Classical planning
1. Problem definition:

a. State space: K-Boolean (2^K states).

b. World state: complete assignment (every variable has value).

c. Belief state: complete or partial assignment, or even formulas of variables.

d. Actions: every action has pre-condition and effect in terms of relations of objects

(as in logic).

2. Finding classical plan:

a. Forward/Progression search: start from initial state and search over possible

actions.

b. Backward/Regression search: start from goal state and search backward over

sufficient actions (e.g. if I want to buy a certain book, I won't go over all possible

purchases, but rather look at the purchase which can end up with me having that

certain book, i.e. Buy(this_certain_book)).

c. Plan space search: start from abstract plan like "[initial state → goal state]", and

refine the plan until it's complete. It's unclear in the lecture how to do that.

3. Nowadays, forward search is the most popular of the three, since modern search plans

use heuristics to reduce the space of possible choices, and heuristics work more efficiently

with concrete possible actions (rather than hypothetical actions and states as in

regression and plan space search).

4. Heuristics can be achieved by simplified actions, ignoring pre-conditions or negative

effects. Having the representation of actions, the heuristics can be defined automatically

by the program.

Situation calculus
1. Represent planning in terms of First Order Logic, to allow advanced goals such as "move

all cargo to this airport".

2. Since the problem is represented as a theorem in FOL needed to be proved, it can be

solved by a general theorems prover of FOL.

3. Representations:

a. Actions and situations are represented by objects.

b. Pre-conditions are formulas of the form "Conditions → Possible(certain_action)".

Ido Greenberg 2016

19

c. Conventionally, an action is a function whose last argument is the input state.

d. Initial state and goal are defined by sets of formulas.

4. Successor state axiom – defines the flow of states:

a. ∀𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑎𝑡𝑒: 𝑃𝑜𝑠𝑠(𝑎, 𝑠)➔[some fluent is true iff (𝑎 made it true OR it was

true in 𝑠 and 𝑎 didn’t undo it)].

Planning under Uncertainty

MDP
1. Markov Decision Process is planning tool for stochastic, fully observable environment.

2. The world’s representation is a graph of states (nodes) and actions (edges) as in

conventional planning (e.g. situation calculus), except that the transitions between states

are not deterministic, but rather based on probabilistic transition matrix, i.e. every edge

splits in the middle.

3. Problems with conventional planning (searching over decisions tree):

a. Large branching factor: Decisions trees grow very rapidly, especially when there

are many possible actions outcomes (as in stochastic environment).

b. Trees may become too deep. In particular, loops (caused by uncertainty) make

them infinitely deep.

c. The same states are visited many times in the tree, which is very inefficient

representation, since usually we would like to do the same action in the same

state.

4. Policy:

a. For every state, choose the best action among available ones.

b. Compact representation – every state appears only once.

c. For every state we define reward/cost achieved by getting to the state. The value

of a plan 𝜋 applied from a state 𝑠 is 𝑽𝝅(𝒔) = 𝑬[∑ 𝑹𝒕𝒕 |𝒔𝟎 = 𝒔].

d. Expressing cost of time:

i. Add constant cost to every state, giving motivation to avoid visiting the

state repeatedly.

ii. Add discount factor reducing the reward when loosing time, by defining

the value as 𝐸[∑ 𝛾𝑡𝑅𝑡𝑡].

5. Value iteration: how to find a policy with high value?

a. Define value for every state, derived from both its inherent value and the values

of its neighborhood:

i. Start with the inherent values of the states {𝑣(𝑠) = 𝑅(𝑠)}.

ii. Every iteration, re-define the value of every state, by assigning the best

expected value that can be achieved in the following step (back-up

equation):

𝑣(𝑠) = [max
𝑎

𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑣(𝑠′)

𝑠′

] + 𝑅(𝑠)

Ido Greenberg 2016

20

iii. (Exceptions are terminal states remaining with 𝑣(𝑠) = 𝑅(𝑠).)

iv. Convergence is guaranteed.

b. Now the optimal policy is just the actions which maximize the expected values of

the states (same as the back-up equation, but with 𝑎𝑟𝑔𝑚𝑎𝑥 rather than 𝑚𝑎𝑥…).

6. Summary:

POMDP
1. MDP cannot express information gathering, since it represents fully observable world.

2. Partially Observable Markov Decision Process: represent partial observability by

duplicating the whole states space according to available information. Gathering

information transforms us to the relevant copy of the states space.

3. Demonstration: A* (fully observable & deterministic world), MDP (fully obs. & stochastic),

and POMDP (partially obs. & stochastic).

Ido Greenberg 2016

21

Reinforcement learning
1. In the previous sections we tried to get to states with large reward. In this section we will

see how to plan when we don’t know the rewards of the states and the probabilities of

transitions between them.

a. Quite similar to the challenge of POMOP. Maybe the difference is that here we

also use machine learning (they said something about it before…).

2. Reinforcement learning was successful, for example, in playing backgammon (6-besh)

and controlling helicopter remotely.

3. Reinforcement learning is a form of learning, additional to supervised ({𝑥𝑖, 𝑦𝑖}) and

unsupervised ({𝑥𝑖}) learning. In this form of learning, we have sequences of states and

actions ({𝑠𝑖}, {𝑎𝑖}), and rewards associated with certain states.

4. Goal: find the optimal policy, i.e. what is the optimal action in every state.

5. Types of agents of reinforcement learning:

a. Utility-based agent: given the transitions probabilities 𝑃, it learns the rewards

𝑅(𝑠) of the states and uses 𝑃 and 𝑅 together for planning (as before).

b. Q-learning agent: learns the utility function 𝑄(𝑠, 𝑎) of performing certain actions

on certain states, then uses 𝑄 without explicitly associate rewards 𝑅(𝑠) to the

states.

c. Reflex agent: learns the optimal behavior on every state 𝜋(𝑠) and uses it even

without predicting the utility.

6. Passive RL vs. Active RL:

a. Passive reinforcement learning learns the environment on-the-way, i.e. without

affecting the policy of actions.

b. Active reinforcement learning learns the environment and changes the policy

interactively – both to improve the utility and to allow additional exploration of

the environment.

7. Passive Temporal Difference learning: a basic passive RL method, assuming the rewards

of states are locally observable.

a. Basic idea: run some policy a lot of times, and every time update the utility of

every state according to the utility of the one followed it.

b. Algorithm: use some arbitrary policy 𝜋 and run it iteratively from an initial state.

On every run, on every step of the policy:

i. If the output state 𝑠′ is new: define its utility 𝑈(𝑠′) ≔ 𝑟′.

ii. Increment the counter of visits at the input state 𝑁(𝑠). The learning rate

will depend on 𝑁, since we wish to use smaller updates as we have more

visits (hence more confidence) in the state.

Ido Greenberg 2016

22

iii. Update the utility of the input state 𝑠 according to its own reward 𝑟, the

output state utility 𝑈(𝑠′), and some learning rate 𝛼(𝑁(𝑠)) (𝛾 is discount

factor as in previous section):

𝑈(𝑠) ≔ 𝑈(𝑠) + 𝛼(𝑁(𝑠))[𝑟 + 𝛾𝑈(𝑠′) − 𝑈(𝑠)]

iv. Optional: update previous states as well (that changes the algorithm from

TD(0) to TD(1)).

1. Meaning of the modification: in s1->s2->…->sn, U(s1) will give up

on U(s2) in favor of U(sn), while summing all r1…rn on the way.

2. TD(0) updates U(s1) with info about s2 taken from all the data of

s2 (using U(s2) directly).

3. TD(1) updates U(s1) with info about s2 taken only from scenarios

in which s2 followed s1 (replacing U(s2) by the actual future

rewards in those scenarios). Hence TD(1) does not assume the

Markov Property (s2 is used for U(s1) merely in scenarios where

s1->s2), but as a result it exploits much less data, and is sensitive

to the paths of states that occurred in the specific scenarios that

passed through s1.

c. It is also possible to update K-steps back (rather than 1 step as in TD(0) or ∞ steps

as in TD(1)). Usually a weighted mixture of K’s is used, where the weighting is

implemented through a parameter 0 ≤ 𝜆 ≤ 1, yielding 𝑻𝑫(𝝀).

d. This method performs not so good, mostly because it is passive:

i. The chosen policy affects both the sampled states and their estimated

utilities.

ii. It may miss some states, not assigning any utility to them.

iii. It may visit states only few times because of low probability – yielding

unreliable estimates.

iv. It takes a lot of time to converge at all.

8. Greedy reinforcement learner: active RL method.

a. Same as passive temporal difference, but updates the policy 𝜋 every one or

several iterations.

b. The policy is updated to be optimal in terms of MDP wrt the current utilities

estimates.

c. Greedy → may converge to non-optimal policy.

i. Solution 1: try frequent random deviations from policy (as in genetic

algorithms) – can work but converges very slowly.

ii. Solution 2 – Exploration Agent: force assignment of constant large utility

𝑈(𝑠) ≔ 𝑅 to states that were not explored enough yet (𝑁(𝑠) < 𝐶), so

that the agent will tend to explore them. When 𝑁(𝑠) ≥ 𝐶, go back to

assign the true estimator of 𝑈(𝑠).

9. Q-learning:

a. The exploration agent can get estimation of the rewards of the states 𝑟(𝑠).

However, unless we know the transitions probabilities 𝑃(𝑠′|𝑠, 𝑎), we cannot

derive the correct policy.

Ido Greenberg 2016

23

b. Thus, Q-learning gives up on learning 𝑃 and 𝑈 in order to maximize

∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)𝑠′ , and instead tries to maximize directly ∑ 𝑄(𝑠, 𝑎)𝑠′ .

c. The algorithm is similar to the exploration agent, but with exploration over pairs

(𝑠, 𝑎) rather than states only, which may enlarge the exploration space

significantly.

d. The iterative utility estimation is generalized from TD (Temporal Difference):

𝑄(𝑠, 𝑎) ≔ 𝑄(𝑠, 𝑎) + 𝛼[𝑟(𝑠) + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]

10. Function Generalization to large state spaces:

a. The methods described in this section have to explore the states space, which is

typically huge.

b. The practical solution is:

i. Explore only some of the states.

ii. Identify conceptually similar states in order to generalize learning to un-

explored states.

c. To implement that, we have to represent the states space in advance by terms of

relevant features rather than the “exact real state”.

i. Too many features → too big states space + unimportant features

prevent generalization between similar states.

ii. Too few features → essentially different states are identified as similar.

d. In terms of features {𝑓𝑖}, the utility can be formed as 𝑄(𝑠, 𝑎) = ∑ 𝑤𝑖𝑓𝑖𝑖 , where

the goal of the learning process is to update the weights {𝑤𝑖} of the features.

e. This method essentially forms the agent problem as supervised learning problem:

i. The input is the features array 𝑓1 … 𝑓𝑑.

ii. The output is the utility 𝑄(𝑠, 𝑎) = 𝑄({𝑓𝑖}).

iii. The “brain” model is 𝑄 = ∑𝑤𝑖𝑓𝑖.

iv. The learning is based on the empirical utilities of the explored states and

actions.

Ido Greenberg 2016

24

11. In summary, we saw several methods, each one based on the former, and only the last

one is practically scalable to effectively explore large states spaces:

Method Description Type Exploration
Local

minima
overcome

Exploration
space

Convergence

Passive Temporal
Difference (TD)

Run policy iteratively
& update utilities

Utility-based
(𝑃 is

required)

Passive

No

States of
current

policy only
Very fast

Greedy
Reinforcement

Learner

TD + Update policy by
MDP on estimated

utilities

Active

States of
greedy
policy

Fast

Random
Reinforcement

Learner

Greedy + Add random
deviations from policy

Yes

All states

Slow

Exploration Agent
Greedy + Add

deviations towards
un-explored states

Fast

Q-learning
Exploration over

states and actions
Q-learning

States &
actions

?

Generalization
Q-learning + features-

based utility
Q-learning +
supervised

Features ?

Ido Greenberg 2016

25

Hidden Markov Models and Filters

HMM
1. A lot of buzz introduction – very effective in robotics, medical, finance, speech

recognition, language…

2. HMMs are used for analysis and prediction of time series.

a. Prediction = what is the state going to be at time 𝑡?

b. Analysis = state estimation = given certain measurements at times 1, … , 𝑡, what

is the (internal or hidden) state at time 𝑡?

3. Time series can be represented by simple case of Bayes network – {𝑠𝑖 → 𝑠𝑖+1} – forming

a Markov Chain. Every state emits a measurement 𝑧𝑖(𝑠𝑖), which is the only observable

thing in the process (thus the state is hidden).

4. This model is also the core of probabilistic filters such as Kalman Filters and Particle

Filters.

5. Localization Problem Example: A robot navigates a building, and wants to know its

location given a map and range sensors. In this case, the time series is the location as

function of time, and the measurements are the ranges measured to the walls. An

advanced variant of the problem is not having the map, and building it from scratch on

the fly.

6. Markov chain can be represented by transitions matrix 𝑃𝑖𝑗 = 𝑃(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖). A

stationary distribution of such chain is the asymptotic distribution, and satisfies

∀𝑖: 𝑃(𝑠 = 𝑖) = 𝑃(𝑃 ∙ 𝑠 = 𝑖).

a. Ergodic Markov chain = has unique stationary distribution = initial state

knowledge fades over time. Rate of convergence to stationary distribution is

called mixing speed.

b. Estimating the transitions matrix: it can be found empirically using maximum

likelihood, i.e. by 𝑃𝑖𝑗 ≔
|{𝑠𝑡=𝑖 𝑎𝑛𝑑 𝑠𝑡+1=𝑗}|

|{𝑠𝑡=𝑖}|
 , possibly using Laplacian smoothing (i.e.

adding some uniform-distributed samples to prevent overfitting).

7. State estimation:

a. Our problem is hidden, i.e. we know only the measurements rather than the

states. Thus, the empirical estimation has to be indirect, based on 𝑃(𝑧|𝑠). The

perdition has to be based on both 𝑃(𝑧|𝑠) and 𝑃(𝑠𝑡+1|𝑠𝑡).

b. The estimate of the current state given past measurements is essentially a

convolution of the distributions of the states given the measurements

{𝑃(𝑠𝑡|𝑧𝑡)}𝑡, each normalized according to prior and transitions probabilities

{𝑃(𝑠𝑡|𝑠𝑡′<𝑡)}𝑡.

Particle Filters
1. Particle filters basic idea:

a. Represent the belief state using "particles" randomly assigned to various actual

states.

i. Allows us to work with continuous spaces.

b. Every action changes the state of every particle accordingly.

c. Every measurement changes the probability of every particle to represent the

correct state. Particles of very low probability can be omitted (filtered).

Ido Greenberg 2016

26

2. Sampling-based Implementation:

a. Rather than keeping “actual particles” along with their probabilities, we keep the

distribution of the current state. Every step, we resample the particles multiple

times using this distribution, then use the samples to produce the distribution of

the next step, based on the new measurements.

b. In this implementation, computational resources are proportional to state

likelihood, producing inherent computational efficacy.

3. Algorithm:

a. Input:

i. 𝑆 = {(𝑥, 𝑤)} initial particles with uniform importance weights

ii. 𝑈 controls (transitions matrix?)

iii. 𝑍 new measurements

b. Until convergence of particles distribution:

i. 𝑆’ = 𝜙

ii. For 𝑖 = 1 … 𝑛

1. Sample a particle 𝑠𝑖 from the distribution of 𝑆

2. 𝑥′~𝑃(𝑥′|𝑈, 𝑠𝑖) predict next state of 𝑠𝑖

3. 𝑤′ = 𝑃(𝑧|𝑥′) assign importance weight according to 𝑧

4. 𝑆′ = 𝑆′ ∪ {(𝑥′, 𝑤′)} update new particles set

iii. 𝑤′ = 𝑤′/𝑠𝑢𝑚(𝑤′) weights normalization

iv. 𝑆 = 𝑆′

c. That easy to implement!

4. Problems:

a. High-dimensional spaces require exponentially many particles to fill the space.

i. Rao-Blackwellized particle filters and others try to generalize for high

dimensions.

b. Degenerate conditions – too few particles, too deterministic environment, etc. –

this is unclear. Probably some randomization is needed to guarantee

effectiveness.

5. Advantages – which make particle filters VERY useful in many applications:

a. Easy to implement.

b. Manage computational resources efficiently.

c. Can deal with complex posterior distributions containing many peaks.

Ido Greenberg 2016

27

Summarizing Table
Planning

Comments

Method
World

Representation
Brain Learning Stochastic

Partially

Observable
Continuous Optimality Completeness Time Memory Demonstration Applications

BFS (Breadth

First Search)
Expand close nodes

O(n+m) (nodes &

edges)

CFS (Cost First

Seach)
Expand cheap nodes

O(n+m) - but more

eff icient than BFS

I think I have example for incompleteness: tree

w ith one branch of costs 1/2,1/4,1/8… and

one brach of one cost 1. CFS & DFS w ould fail

all the same…

DFS (Depth First

Search)
Expand deep nodes X

X (for infinite

tree search)

MAY be faster if

destination is deep

and w e are lucky…

O(h) (h is height of

tree)

deep & branching tree

under memory

constraints; or just

w hen destination

expected to bee close

to a leaf rather than to

the root

usually staff

dealing w ith

connectivity

components

A*
Expand heuristically

cheap nodes

V (assuming

optimistic

heuristic)

V

O(n+m) - more

eff icient as the

heuristic is better

O(exp(h))

tree search path planning in

roads map

Situation

Calculus

FOL – objects,

variables & formulas

General theorems

prover
? X V ? V ? ?

theorems provers and their properties w ere

not discussed

Particle filters

Variables describing

states; particles

representing beliefs

Actions -> new

observations -> assign

probabilities to particles

Possible to use any

Reinforcement learner

w hile exploring

V V V

not defined w rt

unknow n

environment

X (crow ded

particles

required)

~ N_particles X

N_steps

~ Number of

particles

(exponential w rt

dimensionality)

quite versatille and not exactly search

algorithm; managing computational resources

on the f ly according to updated probabilities

Rao-

Blackwellized

particle filters

generalization of particle f ilters to be scalable

to high dimensions

MDP (Markov

Decision Tree)

Graph of states &

actions
X ~ Number of nodes

maze solver w ith

possible loops

driving in a w ell

know n

environment

POMDP (Partially

Observable

MDP)

Graph of states &

actions – duplicated

by unobservability.

Observations move

us to another copy

of the states space

little and

defined (each

unobservable

node

duplicates the

states space

exponentially)

~ Number of nodes

X (possible options

for unobservable

nodes ^ number of

unobservable nodes)

maze solver w ith few

signs needed to be

read

some unclear

uses in

w ikipedia, e.g.

conservation of

Sumatran tigers

TD (Temporal

Differences)

Variant of value-

iteration - but the

rew ards are observed

w hile applying some

policy (rather than

know n in advance)

Very slow (passive -

> policy is not

intended to search)

learn utilities of ship

navigation WITHOUT

the authority to

influence the navigation

after the f irst empirical iteration, w hy do w e

need to repeat the experiment, rather than just

applying value iteration based on the observed

inherent rew ards? Note: transitions

probabilities required for deriving policy from

the rew ards found

Greedy learner

As in TD, but w ith

updating the policy

once a w hile according

to the estimated

rew ards (active rather

than passive)

Exploration

agent

As in Greedy learner,

but w ith additional cost

to explored states -

forcing further

exploration

Q-exploration

agent

Pairs of states &

actions

V (both

rew ards &

transitions)

Function

Generalization

Features

characterizing the

states eff iciently

V V

Overcoming

local minima;

sensitive to too

simplif ied

representations

Up to properties

of states w hich

are not

represented

learn how to play

packman (lots of

states but many states

are similar)

Reflex agent –

learn utilities of

policies

-

w as not discussed except from the main idea -

 learn w hat to do in every state, even w ithout

predicting the utilities of the possible actions

very large space to explore! (|S| x |A|)

?

eff icient representation of states space

allow s scalability

learn utilities of ship

navigation WITH the

authority to influence

the navigation
playing

backgammon,

controlling a

helicopter, etc.

Just pick the max of

U(s,a) given s

As in Exploration Agent,

but measuring U(s,a)

rather than R(s)

X (explored states and estimations

are sensitive to chosen policy)

Greedy (explored states and

estimations are sensitive to policies)

Overcoming

local minima

V (assuming the

already-explored

cost is large

enough)

Going over nodes

rather than paths -

more eff icient for

loops and many

branches

V (assuming

f inite states

space…)

VX

Properties Examples

?

V O(exp(h))V

Self localization in 2D/3D environment

tree search path planning in

roads map

"move all cargo to certain airport" using

w ell-defined actions

Robustness: Conditions Allowed

X X X

Mostly

observable

w orld

Value iteration +

greedy maximization
-

Methods Main Idea

Category

Planning –

agent in

environment

chooses

actions in

states

Searching –

f ind a desired

state

Graph search –

discrete w orld

Graph of states &

actions
-

World search –

continuous

w orld

Planning under

uncertainty –

f ind beneficial

policy

X

VReinforcement

learning –learn

beneficial

policy (sà a)

Utility-based

agent – learn

utilities of states

Q-learning

agent – learn

utilities of

actions in states

V

Graph of states &

actions (unknow n

rew ards)

Any planning algorithm

(the agent just f inds

the rew ards).

Transitions

probabilities are

needed to f inally derive

the policy from the

rew ards, e.g. by MDP.

V

(unobservable

 rew ards,

observable

transitions)

Ido Greenberg 2016

28

Data Learning

Comments

Method Model ("Brain") Learning - minimize Loss parameters scalability
margins

maximization
Demonstration Applications

Linear W1*x+W0 analytic minimalization

Logistic 1/(1+exp(W1*x+W0))

Neural Networks

linear + pairwise

nonlinear +

composition

~ as above X

number of layers

Probabilistic

Inference
Bayesian Network experimental sampling

for N k-nary vars

with ni parents

each:

The network structure

allows reduced number

of basic probabilities

(as noted in the left,

wrt k^N)

-

SPAM filtering 1. Naïve Bayes is a simplified case

of disconnected net (i.e. independent

variables). 2. The principles of D-

separation and Variables Elimination

allow computing and measuring

certain dependencies in the net.

Perceptron sign(W1*x+W0) GD (n+1) X m X

SVM

feature coordinates

x_{n+k}(x_1,…,x_n)

+ linear separation

? ?

implicit representation

of features is somehow

supposed to allow

scalability

V?

define

x3=(x1 2̂+x2 2̂) to

allow classification

by radius

Boosting ? ? ? V?

KNN
majority class among

nearest neighbors
memorizing data 0

only for <~20

dimensions - data

density requires

exponential increase

-

HMM

Hidden Markov Chain

+ measurements of

its sequencial

variables

experimental sampling

n 2̂ transitions

probabilities for n

states

-

Analysis &

prediction of time

series in robotics,

medicine, etc.

K-means K centers of clusters

randomize centers; then until

convergence: {assign clusters;

update centers}

K

data density requires

exponential increase in

dimensionality

Not strong enough mathematical

basis.

EM
K distributions of

clusters

As in K-means, but cluster

assignments and distribution

updates are probabilistic rather than

deterministic

K X (parameters

per distribution)

K can be determined dynamically,

through: 1. detection and removal of

clusters with low contribution to the

log likelihood; 2. detection of "middle

ground" likelihoods and addition of

close centers.

Spectral

Clustering

Affinity matrix (based

on some function of

similarity/distance

between data points)

PCA of the affinity matrix

(representing continuity of data

points) + assignment of clusters

according to dominant eigenvectors

PCA
Linear coordination

transformation

Fit data by one multi-dimensional

Gaussian, and choose

coordinations according to its

leading eigenvectors

only cutoff

(determining

number of

dimensions)

Eigen-faces, Body

scan properties

Was not named PCA in the lecture,

but I'm quite sure this is it.

LLE

Piecewise (local)

linear coordination

transformation

Clustering (e.g. K-means) + linear

projection (i.e. PCA) of each cluster

number of clusters

AND dimensional

cutoff for each

cluster

The lecturer talked about Piecewise

linear projection and Local Linear

Embedding, which are probably the

same one.

Isomap
Was not explained in the lecture,

except for being non-linear.

Spectral

Clustering

Affinity matrix (based

on some function of

similarity/distance

between data points)

PCA of the affinity matrix

(representing continuity of data

points) + assignment of clusters

according to dominant eigenvectors

Clustering

-

?

(n+1) X m

-

Properties ExamplesMethods Main Idea

Category

Data learning –

analyze data

and generalize

to unknown data

Supervised –

learn to predict

output from

input

(data=({x,y}) Classification -

output is

discrete

Unsupervised –

learn structures

in data and

represent their

distribution

(data={x})

Dimensionality

reduction

Regression -

output is

continuous or

at least ordered
GD

Ido Greenberg 2016

29

Regularization of Supervised Learning
Regularization = overfitting prevention = reducing the sensitivity of the learnt parameters to the training data.

1. Data manipulation – Laplace smoothing: "smooth" the train data by adding fictive uniformly-distributed samples – preventing overfitting

caused by non-representative data.

2. Cross validation: measure generalization error rather than training error.

3. Complexity penalty in Loss function: allow only "cost-effective" influence of the data on the learnt parameters.

4. Design of insensitive model:

a. Reduce degrees of freedom (e.g. reduce number of parameters in NN or in polynomial interpolation).

b. Avoid too local learning (e.g. use large enough K in KNN).

Ido Greenberg 2016

30

PART II: APPLICATIONS OF AI

Games

General
1. Games usually have strictly defined rules and environment, hence they are convenient

for AI applications.

2. However, the methods learnt so far were not intended for adversarial tasks (against

opponents).

3. Different games have different properties in terms of AI tasks. For example, wrt

stochasticity, partial observability, unknown and adversary, we have:

Chess modeling
4. In chess-like games, where we have 2 players with turns and eventual 0-sum profit, the

game can be modeled by a tree, in which every node is either:

a. “maximization node” of player I

b. “minimization node” of player II (minimizing p1 profit = maximizing p2 profit)

c. “value node” defining the profit of the players directly

d. “chance node” representing stochasticity and evaluated by expectation

5. The values of the nodes and the strategies of the players can be derived by backward-

induction (or recursively) from the value nodes, through the maximization & minimization

nodes. For example:

6. In chess we have about m=30 moves per game, with about b=40 possibilities per move,

yielding about 𝑏𝑚 = 4030 = 1048 nodes, which cannot be practically searched.

7. Approaches for efficient game tree search:

a. Reduce b:

i. Not all the nodes have to be scanned.

ii. Specifically, suppose P1 can guarantee value v1=3 by action a1=1 (see

example above); and suppose that a=2 leads to a branch where P2 can

Ido Greenberg 2016

31

force value of 2. Then we don’t have to scan further children of a2, since

necessarily v2<=2, thus P1 won’t choose a2.

iii. No loss of correctness – we just skip unnecessary checks.

iv. It is claimed that by efficient implementation we can have sqrt(b) instead

of b, i.e. 𝑇 = 𝑂 (𝑏
𝑚

2).

b. Reduce m:

i. We can just cut the tree in a certain depth 𝑚̃ < 𝑚.

ii. The backwards-induced values are replaced by heuristic values → only

approximated solution.

iii. The heuristic values can be assigned by either expert analysis or

supervised learning (e.g. evaluating the states by “empirically, how

probable is it to win from this situation?”).

iv. The horizon effect: assume that we look 𝑚 steps forward in the tree, and

update our search & decision every step. After moving from s1 to s2, we

get new info and may “regret” and go back to s1 (if the game allows that).

In this situation, we will have an infinite loop due to the limit of the

horizon.

v. The evaluation of chance nodes is very sensitive to the heuristic. For

example, when choosing between [50-50 lottery of 0 and 3] and

[guaranteed value of 2], by expectation the last is preferred. However, by

taking squares of the heuristic values, the first becomes better.

c. Graph representation:

i. Not very clear. Clearly, graph may represent the problem more compactly

since there are no repetitions and no memory (we don’t care how we got

to a state).

ii. They say that we can build graphs for decisions in the common states of

the beginning and the ending of a game, possibly based on empirical

outcomes. For less common states in the middle of the game, some

unclear approach (“killer move”) can be used. Yet the point of graph vs.

tree is unclear.

8. Summary: the general approach for turn-taking games analysis is as follows:

The game-dependent analysis deals with determining the cutoff and evaluating the values

heuristically.

Ido Greenberg 2016

32

Game Theory
1. Concepts of "good" strategies:

a. Dominant strategy (of a certain player): better than all other strategies,

independently on all others' decisions.

b. Equilibrium (one strategy of each player): no one can benefit from changing only

his strategy.

c. Pareto Optimal (one strategy of each player): there isn't other possible outcome

which would be better for everyone.

2. Note that often a unique equilibrium is not Pareto Optimal, i.e. rational egocentric

behavior yields bad results for everyone, whereas cooperation could improve the

outcome for all the players.

3. Mixed strategies:

a. The rational behavior might be random.

b. The randomization can be exposed to the rivals, but the actual decision must be

kept as secret.

4. Mixed strategies equilibrium problem can be solved algebraically and represented

geometrically (minmax problem, simplexes, etc.) as taught in Game Theory class.

5. Being seen as irrational can be beneficial – e.g. by making threats more realistic.

6. Scalability: since the games tend to be very complicated, often we merge sets of states to

have a simplified, approximated description of the game, which can be analyzed

computationally (e.g. replace exact card value by "lower or higher than 10").

7. Game Theory pros & cons:

a. Deals with: Uncertainty, Partial Observability, Multi Agents, Stochastic outcomes.

b. Out of scope: unknown actions, continuous actions, irrational opponents,

unknown utilities.

8. Mechanism design: determine the rules of a game to be beneficial for the players or the

designer. Some considerations are external, such as making the game simpler by

existence of dominant strategies for the participants.

9. Second-price auction:

a. Winner is the highest bid; price is the second highest bid.

b. The dominant strategy is to offer the value of the product 𝑥1 = 𝑣:

i. Assume 𝑥1 > 𝑣:

1. If 𝑣 < 𝑥1 < 𝒙𝟐 then we win the bid but pay more than 𝑣 and get

negative value instead of 0 value.

2. If 𝑣 < 𝒙𝟐 < 𝑥1 then we lose the bid and gets 0 value anyway.

3. If 𝒙𝟐 < 𝑣 < 𝑥1 then we win and pay 𝑥2 anyway.

ii. Assume 𝑥1 < 𝑣:

1. If 𝑥1 < 𝑣 < 𝒙𝟐 then we lose the game anyway.

2. If 𝑥1 < 𝒙𝟐 < 𝑣 then we lose the game although we could win it.

3. If 𝒙𝟐 < 𝑥1 < 𝑣 then we pay 𝑥2 anyway.

Ido Greenberg 2016

33

c. This is a Truth Revealing mechanism – the dominant strategy is to offer the true

value!

Ido Greenberg 2016

34

Advanced Planning

Time
1. Problem definition:

a. Goal: complete a list of tasks in shortest time

b. Restrictions: every task requires previous tasks to be completed

2. Given that the start state starts at time 0, the “time values” of states can be defined

recursively:

a. Earliest Start Time (ES): earliest possible time to reach the state = the time

needed to complete all previous tasks.

b. Latest Start Time (LS): latest possible start time that allows completing all the

tasks in the shortest time.

Resources
1. Resources can be represented in planning as variables. However, if we have n units of

some resource (e.g. 10 apples), it is inefficient to represent them by n variables – it wastes

both search time and memory. Thus we wish to represent the quantity of the resource

directly.

2. To apply that, every action gets CONSUME property in addition to the CONDITION and

EFFECT properties.

Hierarchical Planning
1. Hierarchical Task Network (HTN): every step in the plan has sub-steps…

2. Refinement planning: add abstract actions in variant levels. Each such abstract action,

named refinement, implements an action of some level using actions of a lower level. A

refinement is defined by pre-condition and steps of low-actions. A high level task may

have multiple refinements achieving variant outcomes. This abstraction allows effective

planning.

3. Theorem: a HTN achieves a goal iff for every part (i.e. every abstract action), there exists

a refinement that achieves the goal.

4. Reachable states for planning in HTN:

a. Assume that we know the possible outcomes of a high-level action.

b. We can apply the action and keep the possible outcomes (as in stochastic actions,

but this time the uncertainty is derived from lack of decision).

c. Eventually, we can look for the intersection between the states we’ve reached

and the goal states. If such intersection exists, we can choose the refinements of

the actions accordingly in order to reach it.

5. When the reachable states of an abstract action are unknown, we can approximate them

instead (e.g. use bounds on the possible outcomes of the actions – certainly possible

outcomes as lower bound and maybe-possible outcomes as upper bound).

a. Goal states intersect lower bound = goal can be guaranteed

b. Goal states intersect upper bound = goal may be guaranteed

c. Goal states don’t intersect upper bound = goal can’t be guaranteed

Perception
1. Just add percept actions that are intended to sense the environment…

Ido Greenberg 2016

35

Computer Vision

Background
1. Computer vision: “making sense out of images or video”.

2. Pin-hole camera: simple camera with no lens – just letting the photons pass through a

pin-hole. The image of an object is given at size 𝑥 = 𝑋
𝑓

𝑧
, as we saw in class in 2004 (using

equal triangles).

a. ➔ parallel lines become non-parallel in image. As the lines get far from the

camera, they converge into a common vanishing point.

3. Lens:

a. Pinhole camera is limited by the power of light passing through the pinhole, which

must be very small in order to allow focused images. The small hole both reduces

the amount of light and may even cause light diffraction (bending over the edges).

b. A lens focuses different light rays, hence it allows enlarged hole and much more

light getting to the detectors.

c. Lens equation:
1

𝑓
=

1

𝑍
−

1

𝑧

4. Computer vision tasks:

a. Classify objects

b. 3D reconstructions

c. Motion analysis

2D Image Analysis
1. Objects recognition: recognition is essential for all the tasks mentioned above. A

recognition algorithm is required to be invariant to:

a. Scale

b. Illumination

c. Rotation

d. Deformation

e. Occlusion

f. View point (a difficult one – the object may change a lot!)

2. Extracting Features = telling things about the image.

3. Linear Filter = convolution = sum (or diff) of pixels, defined by a kernel, i.e. a mask.

a. It can be used, for example, to identify edges of a certain direction: 𝐼𝑥 =

𝐼⨂[−1,1] is a vertical lines detector (such lines will have large values after the

convolution).

b. Gradient Image – 𝐸 = √𝐼𝑥
2 + 𝐼𝑦

2 – can be used to identify edges generally! (note

that the filter is not linear anymore)

c. Canny edge detector – a more advanced filter to detect edges. It mainly applies

gradient filter, then removes pixels which are not the highest in their

environment – to get thinner lines.

d. Other kernels:

Ido Greenberg 2016

36

i. Sobel, Prewitt: symmetric numerical approximations for “derivation” of

the image – 𝐼⨂ [
1 0 −1
𝑑 0 −𝑑
1 0 −1

] – for better edges.

ii. Kirsh kernel: something unexplained and unclear.

iii. The lecturer urges us to create our own kernels.

e. Gaussian kernel blurs the image, which has 2 uses:

i. Averaging before downsampling (to avoid aliasing).

ii. Denoising by smoothing.

f. Two masks can be merged in advance to 𝐼⨂𝑓⨂𝑔 = 𝐼⨂(𝑓⨂𝑔) (since convolution

is assossiative).

g. Harris Corner Detector:

i. Corner is a useful feature since it is local (opposed to edge).

ii. In an image of Cartesian features (either horizontal or vertical), the area

of a corner will be characterized by lots of large gradients – both

horizontal and vertical (in opposed to edge which would have large

gradients only in one direction). Hence a corner is detected by ∑𝐼𝑥
2 ≫

1 ∧ ∑𝐼𝑦
2 ≫ 1 .

iii. In the general (non-Cartesian) case, the coordinates are conceptually

aligned using eigenvectors. Thus, a corner is detected by 2 large

eigenvalues of the matrix [
∑𝐼𝑥

2 ∑𝐼𝑥𝐼𝑦

∑𝐼𝑥𝐼𝑦 ∑𝐼𝑦
2].

h. Modern feature detectors:

i. Usually extension of Harris corner detector.

ii. Localizable (local features such as corners).

iii. Unique signatures – identify the feature with invariance to lighting,

orientation, etc.

iv. Popular feature extractors:

1. Histogram of Oriented Gradients (HOG)

2. Scale Invariant Feature Transform (SIFT)

3D Vision – Deriving the Depth from Stereo
1. A main part of the gap between a 2D image and the 3D object it represents, is the “depth”

of the image.

2. Given 1 camera, the depth can only be deduced if the size of at least one object is known,

using proportions wrt the focus length.

3. Stereo: Given 2 cameras, the depth can be deduced from the shift between the images:

Ido Greenberg 2016

37

a. (unless the image content is invariant in the direction of the line between the

cameras)

4. Correspondence (data association): necessary for measuring the shifts between the

images.

a. All shifts are 1D, hence if we see an object in the first camera, we can search it

along a known 1D line in the second one.

b. Note that wrong correspondence yields wrong depth estimation, hence reducing

the search domain is very beneficial.

c. Correspondence can be based on either patches matching (by SSD – Sum of

Square Differences – minimization) or features matching (see features analysis

above).

d. Assigning the estimated depth of every pixel can yield a Disparity map, in which

high values represent close distance.

5. Correspondence – context and alignment:

a. When the detectors are far from each other, the occlusions derived from the

depth may be different, thus the two images may be different – certain pixels will

be missing in each image.

b. To align the images and cancel the effect of the missing pixels, the algorithm has

to check the possibility of dropping pixels. A cost is defined for miss-matched

pixels and for dropped pixels, and the algorithm minimizes the total cost to align

and match the images under possible occlusions.

6. Alignment using dynamic programming:

a. Since alignment is based on dropping certain pixels, the possible combinations of

dropping are exponential in the size of the image.

b. “Dynamic programming” aligns the images in O(n_pixels^2).

c. The problem is defined as finding the best path in a corresponding map, where

diagonal move represents pixels comparison, horizontal move represents

occlusion in one image, and vertical move represents occlusion in the other image

(costs of moves are defined accordingly):

Ido Greenberg 2016

38

d. The best path is computed using MDP (see corresponding section). The value

iteration method can be applied in this case from the origin and forwards,

defining the cumulative cost of each node (rather than backwards from the

destination as demonstrated before).

e. Note that due to the structure of the abstract map, and since the “motion” within

it is deterministic, only one iteration is needed to assign the values to the nodes.

The generalization to 2D image patches may not be trivial, but in the 1D case

demonstrated above, it is clear that we get O(n^2).

7. Correspondence – additional challenges:

a. An object may have different locations wrt the background, if it is far from the

background.

b. Rounded occluding objects have different occlusion edges from different POVs.

c. Reflections of light appear in different locations, depending on the POV.

8. Stereo vision can be improved by creating clear features through structured light

illumination – e.g. by stripes illumination, or by laser texture. This is relevant mainly for

mapping small objects in controlled environment.

9. A modern alternative approach to Stereo is just using Laser Radar.

Structure from Motion
10. Dynamic camera allows mapping vast areas using one camera, based on stereo of

sequential images. This is called Structure from Motion.

11. The challenge is that the location of the camera may be unknown or inaccurate, thus the

distance between the cameras poses is unknown; and the camera takes different images

in different orientations (rather than only from different locations on the same plane as

before).

12. To use stereo approach and compute the depth, we have to locate the camera poses and

the objects simultaneously. This requires optimizing images correspondence wrt the

locations, orientations and translations simultaneously, which is a complex non-linear

optimization problem (can be solved for example by GD).

13. The problem has 6𝑛𝑝𝑜𝑠𝑒𝑠 + 3𝑛𝑜𝑏𝑗𝑠 unknowns (camera locations and translations, and

objects locations); and 2𝑛𝑝𝑜𝑠𝑒𝑠𝑛𝑜𝑏𝑗𝑠 constraints (x,y coordinates for every object in every

image). Thus 6𝑛𝑝𝑜𝑠𝑒𝑠 + 3𝑛𝑜𝑏𝑗𝑠 ≤ 2𝑛𝑝𝑜𝑠𝑒𝑠𝑛𝑜𝑏𝑗𝑠 is required to solve the problem.

14. Note that problem is invariant to global shifts and rotations, as well as to scaling (i.e.

stretching the whole system). Thus, there will always remain 3+3+1=7 degrees of freedom

in the reconstruction.

Ido Greenberg 2016

39

Robotics
1. Robotics: An agent senses the environment through sensors and performs actions.

2. The guy started his robotics career by leading his class to win the DARPA challenge of

crossing a dessert using an autonomous vehicle.

3. In the urban challenge, the vehicle managed to localize itself within a map and detect

other cars and obstacles using particle filters and histogram filters.

Perception
4. Perception is the part of sensing and understanding the situation. Here we'll mainly talk

about finding and predicting the location.

5. Kinematic state dimensionality of a robot (1st order approximation):

a. Car on a plane: x, y, rotation in plane ➔ 3 dimensions

b. Free-flying helicopter in the air: x, y, z, 3 Euler angles ➔ 6 dimensions

6. Dynamic state dimensionality:

a. Car on a plane: x, y, rotation in plane, vforward, yaw velocity (=turn speed); no speed

to the side ➔ 5 dimensions

b. Free-flying helicopter in the air: x, y, z, 3 Euler angles + differentiation of every

such variable ➔ 12 dimensions

7. GPS can give the location of a car with ~5m error. In the guy's car, additional particle filter

improved the localization to ~10cm error.

8. Monte Carlo Localization:

a. Basic car model: 2 connected wheels that can move in the same speed (to go

forward) or in different speeds (to turn). Kinematic state is 3D and dynamic state

is 5D, as explained above.

b. In the deterministic case, the location can be predicted every Δ𝑡 ≈ 0.1𝑠 by:

𝑥′ = 𝑥 + 𝑣 ∙ Δ𝑡 ∙ 𝑐𝑜𝑠𝜃

𝑦′ = 𝑦 + 𝑣 ∙ Δ𝑡 ∙ 𝑠𝑖𝑛𝜃

θ′ = 𝜃 + 𝜔 ∙ Δ𝑡

c. This can be directly applied to particle filter localization, given appropriate map

and sensors. Reminder: particle filter performs iteratively: measure environment,

weight particles, sample and predict.

d. New particles are created by the fact that the actions are stochastic, hence small

errors are added to the prediction step.

Planning
9. Planning is about choosing the next actions given a certain situation.

10. A driving path can be planned by the tools described in previous lessons… the ones

demonstrated are partitioning the space into discrete states, and find the best path using

value-iteration in MDP, or A* (which is useful when we have to use heuristics for

unmapped roads, e.g. for passing obstacles from aside).

Ido Greenberg 2016

40

11. Continuous world vs. discrete state-space:

a. The gap between those 2 is a significant problem. For example, a car can't take

immediate turns (i.e. infinitely sharp turns), hence the path found by A* in

discrete grid cells space cannot be applied to the actual car.

b. Hybrid A* memorizes the exact kinematic state (x,y,theta) within a cell. This one

is determined by the location prediction ODEs (which must have better numerical

resolution than the grid cells). The transitions between cells are no longer straight

forward, and smooth turns can be achieved by micro-turning within a cell. This is

actually a kind of hierarchical planning – grid cell for path search, and exact

location for driving implementation.

Ido Greenberg 2016

41

Natural Language Processing
1. Interests:

a. Philosophical: natural language is the way we think, and what we believe that

separates us from other animals.

b. Communication: controlling machines using natural language is intuitive and

convenient.

c. Learning: understanding natural language allows machines to learn huge

amounts of available data.

2. Two popular language models:

a. Probabilistic, word-based, learned: based on the empirical probability of

appearance of sequences of words 𝑃(𝑤1, 𝑤2, …).

b. Logical, trees/categories-based, hand-coded: based on abstract structures

representing valid syntax (noun → verb etc.).

c. The separation is traditional, but there can be probabilistic and structural models

of the language.

3. Naïve Bayes model: every words is assumed to be independent on the context (unigram

model – every word stands alone), which yields the naïve probabilistic model 𝑃({𝑤𝑖}) =

∏ 𝑝(𝑤𝑖)𝑖 , that deals with "bags of words" rather than sequences.

4. A general probabilistic model will satisfies 𝑃({𝑤𝑖}) = ∏ 𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1)𝑖 , assuming

that the probability of a word depends on the previous words in the sentence.

a. Markov assumption localizes the problem, assuming dependence on the last 𝑘

words only: 𝑃({𝑤𝑖}) = ∏ 𝑝(𝑤𝑖|𝑤𝑖−𝑘, … , 𝑤𝑖−1)𝑖 .

i. 𝑘 = 0 gives the naïve Bayes model.

ii. For 𝑘 = 1 it is called bigram model, since the words kind of come in pairs.

𝑘 = 2 gives trigram model, and in general we have N-gram models (𝑁 =

𝑘 + 1).

iii. Higher 𝑘 yields more complex and accurate model of the language.

b. Stationarity assumption: if I keep talking, it doesn’t matter whether it's the 10th

or the 20th sentence/word, thus 𝑝(𝑤𝑖|𝑤𝑖−𝑘, … , 𝑤𝑖−1) = 𝑝(𝑤𝑗|𝑤𝑗−𝑘, … , 𝑤𝑗−1).

This assumption is usually used for simplicity even when there are only few

sentences or words in each sentence.

c. Smoothing: as demonstrated before, to reduce the sensitivity to the empirical

data available for learning, the learned distribution can be smoothed (e.g. by

averaging it with uniform distribution, as in Laplace smoothing).

5. Word-based models applications:

Ido Greenberg 2016

42

6. Variations of the probabilistic model may include the syntactic role of a word (noun, verb,

etc.) or use basic units of letters or phrases (e.g. "New-York City") rather than words.

7. Letter-based model is effective for learning new words, detection of valid words, and

classification of phrases to different languages/classes. Note that storing all probabilities

of triplets of letters requires ~303 ≈ 3 ∙ 104 triplets rather than ~1063
= 1018 triplets

of words.

a. In practical language identification, one usually uses both letter-based model

and several discriminative words – which are common in one language and invalid

in the others.

b. Note that for classification, one can use both word-based and letter-based

features, and examine their efficacies using machine-learning technics.

c. In addition to machine learning, a nice trick for classification of phrases is based

on compression technics (e.g. Hoffman compression): a typical text will be more

efficiently compressed when it contains homogeneous language. Thus,

compressed sentence will be smaller after being concatenated to text of the same

language rather than to other language. This can be implemented as follows:

This essentially detects common phrases in the language which appear in the new

sentence. It demonstrates the close relations between compression and

processing, through information theory and entropy of expressions.

Segmentation
8. Segmentation is the action of separating text into token representing words.

Ido Greenberg 2016

43

9. In written English it is trivially done by spaces. That’s not the case in spoken English or

even written Chinese (seriously? no spaces?) or words within a URL.

10. Goal: find 𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑒𝑔𝑃(𝑤1, … , 𝑤𝑛) over all possible segmentations of a sequence

of characters.

11. Simplification – Naïve Bayes model:

a. The joint distribution is simpler to calculate: 𝑃 = ∏𝑃(𝑤𝑖).

b. Given 𝑛 characters, there are 2𝑛−1 possible segmentations. Independence

between words allows us to avoid examining every single segmentation.

12. The naive segmentation works well in most cases, and can be implemented recursively as

follows (some smoothing should be added inside Pwords()):

13. Problems with the simplified segmentation algorithm:

a. Ambiguity: “base rate sought to” vs. “base rates ought to”.

b. Naivety: 𝑃(“𝑖𝑛”) ∗ 𝑃(“𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”) > 𝑃(“𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”), although

𝑃(“𝑖𝑛 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”) ≪ 𝑃(“𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”), so the naïve model is wrong here.

c. Smoothing: “g in or mouse go” was chosen rather than “ginormous ego”. This can

be prevented by larger database, but also by smarter smoothing, that allows the

word ‘ginormous’ without observing it before. Such smart smoothing may use,

for example, letter model that identifies the common ending ‘ous’.

Spelling
14. Spelling is finding the correct version of a word among possible corrections.

15. Goal: given a word 𝑤, find 𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝑐|𝑤) ~ 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝑤|𝑐)𝑃(𝑐) (up to a

constant denominator).

16. The prior probability 𝑷(𝒄) of the correct word can be determined as before, possibly

naively from text database.

17. The probability 𝑷(𝒘|𝒄) of a certain spelling mistake in a word is more difficult to learn

due to lack of data.

Ido Greenberg 2016

44

a. There are several spelling correction websites in which one can find tens of

thousands of common spelling mistakes. This is not enough for words misspelling

learning.

b. However, when modeling errors in letters rather than words – e.g. swapping two

letters, replacement, insertion or deletion – the probability tables derived from

small database may be sufficient.

c. Note that 𝑃(𝑤|𝑤) cannot be derived from such databases, and one should

determine it intuitively (e.g. assuming 95% of the words are spelled correctly).

18. HTDIG is an open-source search engine based on language analysis. A brief look at the

code demonstrates the drawbacks of logical language models: complexity (full block of

code just for specific popular replacement), arbitrariness (why one replacement is tested

and another one is not?), required knowledge of the language (checking spellings that

sound similar), sensitivity to implementation errors in every rule specifically, and lack of

generality (new language analysis requires completely new engine).

Sentence Structure
1. Instead of estimating the probability of a sequence of words according to the words and

their former words, we can analyze the structure of a sentence as a tree:

2. Note that the tree is not unique due to ambiguities in sentences meanings, as

demonstrated above.

3. Parsing is derived from rules – called Context Free Grammar (CFG) – for valid structures.

For example:

Ido Greenberg 2016

45

4. Writing CFG turns out to be extremely difficult. A natural language 𝐿 is typically very

complex, and a simple grammar language 𝐿𝐺 usually either doesn’t cover the whole

language or allows too many invalid sentences. One can give up on some of the valid

sentences and then adding them to the grammar using exceptions, but this is really

complex.

5. Probabilistic Context Free Grammar (PCFG):

a. Just associate a probability with each substruct decomposition (e.g. P(NP->D,N)

wrt P(NP->N)), to achieve probability estimation of the complete sentence.

b. Rules & implementation example:

c. The probabilities should be learnt from real data of sentences trees. Such trees

data is not naturally available (opposed to word counting which is straight

forward from available texts). However, in the 90s, due to the importance of the

field, some organizations created such databases manually. One of them is The

Penn Tree Bank of Pennsylvania University.

d. PCFG advantages:

i. Reduce sensitivity to the language derived from the logical grammar –

invalid sentences might be created, but they would be associated with

low probabilities.

ii. Dealing with ambiguity (which interpretation has larger probability?).

6. Lexicalized Probabilistic Context Free Grammar (LPCFG):

a. PCFG defines probabilities for both syntactic structures (e.g. NP->N,N) and single

words (e.g. N->watermelon).

b. We would like to define probabilities for relations between words. For example,

in “I saw the man with a telescope”, we wish to solve the ambiguity and decide

whether “with a telescope” refers to the man or to seeing. This cannot be

estimated by structural analysis, but must examine the relations between the

words themselves, and associate them with probabilities.

c. Note that structural analysis IS needed to understand which words relate to each

other.

d. Specifically in the example, we wish to compare the following:

i. P(NP->NP,PP | NP=man, PP=with telescope)

Ido Greenberg 2016

46

ii. P(VP->V,NP,PP | V=saw, NP=man, PP=with telescope)

e. Since the exact phrases “saw”, “the man” and “with a telescope” are very specific,

it is difficult to learn their relationships from data. Thus, it is essential to use back-

off models that generalize those terms (e.g. “the man” may belong to “persons”

category).

f. All of that is done by Lexicalized Grammar.

7. Parsing – sentence→tree:

a. Search approach can be applied – either bottom-up or top-down.

b. Bottom-up: for every word note the possible interpretations (N,V,D), and then try

to connect them into phrases, until a complete sentence is achieved.

c. Top-down: start from the complete sentence node, and try to decompose it into

sub-phrases according to the grammar rules, until the decomposition fits the

sentence.

d. The hierarchical structure of the tree allows recursive parsing, in which every

phrase can be decomposed independently on the other phrases.

Machine Translation
1. Possible approaches:

a. Translate words.

b. Translate phrases – few words together.

c. Translate syntax tree – given structure of sentence in L1, what is the probable

structure of the translated sentence in L2?

d. Translate semantics and meaning – understand the general meaning of the

sentence, e.g. “person does something”, and keep that meaning in the

translation.

2. The hierarchy of the approaches above is known as Valcroix’s Pyramid. The higher

approaches in the hierarchy must rely on the lower ones in order to complete the

translation task and return a concrete sentence.

3. A corresponding probabilistic model may take into account the following probabilities:

a. Segmentation – picking words together into phrases.

b. Translation – of L1 phrases to L2 phrases.

c. Distortion/syntax – how phrases tend to move within the sentence in such

translations, or how the syntax tends to change between the languages.

d. Result – is the translated sentence valid?

Summary: Language Models

Model Probabilistic Structures Complexity Semantics Atomic Unit

Naïve Bayes
V

“Bags of words” X
word/letter

Markovian Sequences partially

CFG X

Syntax
X

word PCFG
V

LPCFG V

Ido Greenberg 2016

47

Q&A
1. Only watched sporadically (about 2 hours of Q&A aggregately!).

2. Suggested software:

a. Mahout – machine learning toolkit, useful for both applications and independent

building of ML algorithms.

b. MATLAB – strong at quick processing and visualization.

3. Out of scope: Genetic algorithms, Neural Networks, Fuzzy algorithms, Fuzzy logic.

4. They said something about connecting excellent students to some good employee, but I

think it’s only for the paid version of the course. Not sure.

