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PART I: FUNDUMENTALS OF AI 

Welcome 
1. Applications: finance, robotics, games, medicine, web… 

2. “Intelligent Agent” interacts with “Environment” 

3. Input is received through sensors, output sent through activators 

4. Problems have the following characteristics: 

a. Fully/partially observable 

b. deterministic/stochastic 

c. discrete/continuous 

d. benign/adversarial (without or with opponent) 

Problem solving 

Problem definition 
1. A problem is defined by: 

a. A set of states 𝑆 

b. Initial state 𝑠0 

c. Actions allowed for every state {𝑎𝑖
𝑠}𝑠∈𝑆 

d. Result function 𝑟: 𝑆 × 𝐴 → 𝑆 

e. Goal test function 𝑔: 𝑆 → {𝑇, 𝐹} 

f. Step cost function 𝑐: 𝑆 × 𝐴 × 𝑆 → 𝑅 

g. Path cost function 𝐶(𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑠𝑛) = ∑𝑐(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) 

2. Graph zones: explored / frontier / unexplored 

3. Problem implementation: 

a. The explored states can be represented by a set (hash table or tree), to allow 

membership test (has the state been explored yet?). 

b. The frontier states can be represented by a priority queue (which is the state 

from which to spread next?). It should be represented as a set as well (to allow 

membership test). 

c. The explored paths can be represented by a list of nodes, each containing 4 

fields: final state; action led to that final state; total cost; and pointer to the 

same path without the final state (“parent”). 
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Graph search algorithms 

Search 
algorithm 

Description 
Optimal (finds the best 

path) 
Complete 

Frontier size 
(derives 
memory 
usage) 

Breadth-
first 

Next vertex = 
fewer steps from 
origin 

Yes: searching until all 
frontier is more 
expensive than the 
solution found 

Yes: if the best path is 
of length n, then 
there’s finite number 
of paths shorter than n, 
then the optimal one 
will be found. 

Number of 
vertices of 
distance n 
from the 
origin (may 
be O(e^n) ) 

Cheapest-
first 

Next vertex = 
smaller aggregate 
cost from origin 

The course says yes, 
though I can design an 
infinite tree with costs 
½,1/4,1/8…, where the 
correct path is of cost 
1, and will not be 
found. 

A* 

Next vertex = 
smaller 
[aggregate cost 
from origin + 
estimated 
distance from 
destination]  

Yes if distance 
estimation is never 
pessimistic (otherwise 
we may give up on 
beneficial states); better 
estimation => shorter 
(more efficient) search 

Yes, same as Breadth-
first 

Depth-
first 

Next vertex = go 
deeper if 
possible, 
otherwise go 
back and try 
another direction 

No: searching until 
finding any solution 

No: infinite search tree 
may prevent arriving to 
the correct path. 
However, if the tree is 
finite and the 
destination is very 
deep in the tree, then 
DFS may reach it faster 
than BFS. 

All the 
current path 
is kept – 
O(n) 

 

1. A* distance admissible heuristic: the optimistic heuristic is intended to save time by 

preventing looking at irrelevant states and paths (e.g. those which get us too far from the 

destination). Such heuristics may be generated by omitting constraints and solving a 

simplified optimization problem, yielding optimistic solutions. 

2. Problem solving by graph search is possible when the states domain is: 

a. Fully observable 

b. Known 

c. Discrete 

d. Deterministic 

e. Static 
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Probability in AI 
Bayes rule 

1. Bayes rule along with all the professional terms: 

 

2. Note that the denominator can be computed by the total probability formula. 

3. The denominator may also be deduced from simple normalization, if we have both 

𝑃(𝐵|𝐴)𝑃(𝐴) and 𝑃(𝐵|! 𝐴)𝑃(! 𝐴). 

Bayesian Network 

1. Bayesian network: probabilistic graphical model representing random variables with 

conditional dependencies. 

2. The distribution of a variable is determined by the values of its parent nodes. 

3. Given 𝑛 k-nary parents (i.e. with k possible values each), a node would be defined by 𝑘𝑛 

distributions – one for each combination of the parents’ values. The joint distribution of 

𝑁 k-nary variables is determined by ∑ (𝒌 − 𝟏)𝒌𝒏𝒊𝑵
𝒊=𝟏  parameters, where 𝑥𝑖 has 𝑛𝑖 

parents; while there are 2𝑁 states. 

4. In the example of the car failure analysis, there are ~65K possible combinations of binary 

variables. Bayesian network reduced the number of specified probabilities to 47, so these 

networks can compactly keep a lot of information. 

5. D-separation: two nodes may be either dependent or independent, depending on which 

other values of nodes in the network are known. The dependence can be tested by terms 

of nodes triplets, where active triplets “pass” the dependence from the first node to the 

last one, as demonstrated in the following chart: 
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6. In other words, dependence exists for any of the following: 

a. There’s direct distribution influence. 

b. There’s indirect distribution influence through unknown variables. 

c. There’s common unknown parent node influencing both. 

d. There’s common known child node influenced by both. 

Probabilistic inference 
1. Note: the following inferences and sampling methods make sense in variant cases when 

the sampled population is available in different ways. For example: 

a. Sometimes we control the independent variables and sometimes not. 

b. Sometimes we can measure only the individual probability of a variable Y and 

sometimes only its conditional probabilities wrt different X’s, etc. 

Unfortunately, that’s hardly explained or demonstrated in the lecture. 

2. Enumeration: 

a. Estimate the probability of 𝑌 = 𝑦 by summation over the probabilities of all the 

states that satisfy this equality, i.e. 𝑃(𝑌 = 𝑦) = ∑ 𝑃 ({𝑋𝑗 = 𝑥𝑖𝑗
}

𝑗
 𝑎𝑛𝑑 𝑌 =𝑖1,…,𝑖𝑛

𝑦), where 𝑥𝑖𝑗
 is the j'th possible value of the i'th variable (assuming it's discrete). 

b. Such enumeration requires summation over all 2^n states of n binary variables, 

for example. To speed up enumeration, we can exploit the direct dependencies 

between the variables. For example, if 𝑋𝑖  determines the distribution of 𝑋𝑖+1 (and 

the dist' of 𝑋1 is known), then we can calculate the distribution of 𝑋𝑖  by induction, 

using only 2n calculations rather than 2^n. This is called Variables Elimination, 

since in each step we practically unite 𝑋𝑖  and 𝑋𝑖+1 into one variable. 

3. Approximate inference: 

a. Sampling: a distribution can be approximated by just sampling it (simulate the 

process and measure all variables, like in Monte-Carlo simulation). 
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b. Sampling allows estimation of either the complete joint probability distribution 

𝑃(𝑋, 𝑌) or an individual variable distribution 𝑃(𝑌), making the method 

consistent. 

c. It also allows approximating a conditional distribution given other variable value 

𝑃(𝑌|𝑋 = 𝑥), by using only the samples satisfying 𝑋 = 𝑥. This is called Rejection 

Sampling, since we reject irrelevant samples. 

4. Likelihood weighting: 

a. Rejection sampling is inefficient when most samples are irrelevant (e.g. if we tried 

to measure the weather given that today a war begins, then we would reject 

years of samples and keep only a few relevant days). 

b. Instead, we can sample only relevant samples (e.g. only the days when a war was 

opened) and keep all of them. 

c. If we use this method to compute both 𝑃(𝑌|𝑋 = 𝑥) and 𝑃(𝑌|𝑋 ≠ 𝑥), then we 

can approximate 𝑃(𝑌) consistently by 𝑃(𝑌) = 𝑃(𝑋 = 𝑥) ∙ 𝑃(𝑌|𝑋 = 𝑥) + 𝑃(𝑋 ≠

𝑥) ∙ 𝑃(𝑌|𝑋 ≠ 𝑥). This is called likelihood weighting, since we assign weight to 

each conditional probability distribution. 

5. Gibbs sampling: 

a. Sampling method intended to be more efficient when desired values of 

conditioning variables are rare (i.e. for measuring 𝑃(𝑌|𝑋 = 𝑥) where 𝑃(𝑋 = 𝑥) 

is small). The idea [Berkman] is to find one such sample, then look for more 

samples in the same local parameters range, assuming there is higher probability 

to find X=x in this parametric neighborhood, and assuming the sampling 

mechanism allows us to control where we look (for example if one of the variables 

is a location in the world to measure, we can sample the locations in which X=x is 

more probable). However, this is not explained so well in the lecture. 

b. Gibbs sampling is usually implemented by Markov Chain Monte Carlo (MCMC). 

c. We begin with a certain sample of all the variables. Then, for each generation, 

we sample (once? multiple times?) one of the variables given the current values 

of the other variables, then change the value of this variable and go on to the next 

generation. This way, in each generation we change (exactly? at most?) one value 

among the variables. 

d. Although the samples clearly depend on each other (each one is almost identical 

to the former), this sampling method turns out to be consistent, i.e. to 

asymptotically yield the correct complete joint distribution. 
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Machine learning 
1. Buzz buzz buzz – machine learning does everything etc. autonomic car uses machine 

learning etc. 

2. Goal definition: 

a. Supervised – learn data telling us the desired output 

b. Unsupervised – make sense in data without required output 

c. Reinforcement – learn by feedback from environment (as in some genetic 

algorithms) 

Supervised learning 
1. Find function 𝑓(𝑥) = 𝑦 that fits given data {𝑥𝑖, 𝑦𝑖}𝑖, in a way that allows generalization of 

the prediction function 𝑓 to new data as well. 

2. Occam’s (Okham’s) Razor: choose the less complex hypothesis. 

3. In practice, there’s tradeoff between fit and complexity. The goal is to find the complexity 

minimizing the generalization error: 

 

4. Overfitting may be very hazardous. For example: 

a. 10 points {(𝑥𝑖, 𝑦𝑖)} around a line should be approximated by line rather than 10-

degree polynomial. 

b. Assume that we classify SPAM according to frequency of keywords (using Naive 

Bayes model which assumes independent occurrences), and that one arbitrary 

word has never occurred in spam messages yet. Then every new message 

containing this word will be classified as HAM (non-spam), which is clearly 

overfitting. 

5. The general approach to overfitting prevention, is to reduce the sensitivity of the model’s 

parameters to the training data – through either model design, data manipulation or Loss 

measuring. 

a. In particular, complex models (many degrees of freedom) have higher tendency 

to overfitting, since it is more probable to have a combination of parameters that 

“happens” to fit the training data without solving the essential problem of finding 

a true pattern. That’s the case in the 10-degree polynomial. 

6. Laplace smoothing: when dividing data into classes and counting the occurrences of 

samples belonging to each class – add 𝐾 to the count of every class. 

a. In other words, we take weighted average of the data distribution with unite 

distribution. 
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b. It prevents 0-counters which are dominant in calculations. 

c. The fit error derived from this smoothness becomes smaller as the number of 

samples satisfies 𝑁 ≫ 𝐾. 

7. SPAM filtering: the naive Bayes model described above practically doesn’t work for 

intelligent spammers, so more advanced heuristics are used: known spamming IP, person 

previously contacted, similar emails for many addressee, capital letters, consistent links 

texts and URLs, using the name of the addressee… 

8. Digit recognition: 

a. From 16x16 images of hand-written digits to the corresponding digit. 

b. Main challenge in input representation is high sensitivity of the image to shifting. 

It can be partially solved by convolution with smoothing function. 

c. Naive Bayes is not so good here since it assumes independence between input 

entries (pixels), but we will use it here for studying. 

9. Overfitting prevention: 

a. Occam’s razor implemented by Laplace smoothing with parameter 𝐾 – see above. 

𝐾, as hyper-parameters in general, can be chosen to minimize generalization 

error, by using Cross Validation data. 

b. The convention is 80% train data (determine parameters by fitting), 10% CV data 

(tune hyper-parameters for small generalization error), and 10% test data (not 

involved in the learning process – used only once in the end, otherwise there may 

be hidden overfitting). 

10. Regression: 

a. Continuous output values, opposed to discrete labels of classification. 

b. Linear regression is of the form 𝑍 = 𝑓(𝑋) = 𝑊1 ∙ 𝑋 + 𝑊0. 

c. Goal: minimize the Loss function wrt data, which is the 𝐿2 norm of the errors 𝑌 −

𝑓(𝑋). For linear regression, minimization gives (by 
𝜕𝐿

𝜕𝑊0
= 0,

𝜕𝐿

𝜕𝑊1
= 0): 

i. 𝑊0 =
1

𝑀
∑𝑦𝑖 −

𝑊1

𝑀
∑𝑥𝑖 (M is the number of training samples) 

ii. 𝑊1 =
𝑀∑𝑥𝑖𝑦𝑖−∑𝑥𝑖∑𝑦𝑖

𝑀∑𝑥𝑖
2−(∑𝑥𝑖)2  

d. Logistic regression: 𝑍 =
1

1+𝑒𝑓(𝑋) ∈ (0,1) 

11. Regularization: add complexity penalty to the loss function: L = Loss(data fit) + 

Loss(parameters). Usually It’s just 𝐿𝑃 norm of the parameters. 

12. Gradient descent: start at some point in the parametric space, and do iterative small steps 

against the gradient of the loss (Θ ≔ Θ − 𝑟
𝜕𝐿

𝜕Θ
), to gradually reduce the loss. Can 

numerically find local minimum. Finding the global minimum is tricky and can be studied 

in Optimization Theory. 

13. Perceptron: implementation of linear classification, invented in the 40’s. The perceptron 

is a linear separator used to separate 2 classes of samples. 

a. It is computed by Gradient Descent wrt corresponding loss function, giving 𝑤𝑖 ≔

𝑤𝑖 + 𝑟 (𝑦𝑗 − 𝑓(𝑥𝑗)). It converges iff the data is linearly-separable, then it 

converges to a linear separator. 

b. Online GD is typically used, i.e. every iteration uses only a batch of samples, 

possibly new ones. 
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c. Margin of linear separator = its distance to the closest sample. Perceptron does 

not deal with maximizing the margin. Most popular tools to achieve maximum 

margin are Support Vector Machines (SVM) and Boosting, which are out of the 

scope of the course. 

d. Briefly, the trick is to add fictive new coordinates (features) to the data 𝑥𝑛+𝑘 =

𝑓𝑘(𝑥1, … , 𝑥𝑛), allowing linear separation between the different classes. For 

example, in the classic 2 circles separation (𝑥1
𝑖 2

+ 𝑥2
𝑖 2

< 𝑅2 vs. 𝑥1
𝑖 2

+ 𝑥2
𝑖 2

> 𝑅2), 

the 3rd coordinate can be 𝑥3 ≔ √𝑥1
2 + 𝑥2

2. In SVMs, large new feature spaces can 

be generated by something named Kernel, which implicitly represent them 

without actually computing them. 

14. K-nearest neighbors (KNN): non-parametric machine learning method! 

a. Learning: just memorize all training data. 

b. Predicting: just find the K nearest neighbors, and choose the majority class label 

among them. 

c. Assumes local continuity – if many neighbors are of class Y, then so is the new 

sample. 

d. In all the parametric methods, the number of parameters is inherently 

independent on the size of the data. In non-parametric methods, the number of 

“parameters” can grow with the data. In KNN, the “parameters” are actually the 

whole training data. 

e. As in Laplacian smoothing (see above), 𝐾 here is practically the smoothing 

parameter, or the regularizer. Higher 𝐾 derives smoother classification borders, 

though it allows more outliers, i.e. training samples located in the zone of the 

wrong class (which may be either good or bad, depending on the problem). 

f. Problem I: large data sets make search long. Organizing data in kDD-trees allow 

logarithmic search. 

g. Problem II: too many input dimensions make the feature spaces too sparse, since 

to keep the density of the samples, their number should increase exponentially 

with the dimensions. Thus KNN is typically used only for input of few dimensions, 

and collapses for 20+ dimensions. 

Supervised Learning Algorithms 

Goal Method Typical learning 
Common 

regularization 
Parametric 

Regression 
Linear regression 

Minimize loss 
analytically Complexity penalty 

in loss function 

Yes 

Logistic regression Minimize loss by GD 

Classification 

Naive Bayes 
Learn “atomic” 

probabilities empirically 
Laplace smoothing 

Linear 
separation 

Perceptron 
~GD (what do we 

minimize exactly?) 
 

Maximizing 
margins 

SVM ?  

Boosting ?  

K-nearest neighbors 
(KNN) 

Memorize training data 
Use many neighbors 

(𝐾) 
No 
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Unsupervised learning 
1. “Find structure in data”. For example: data organized in 2 limited zones in 𝑅2 (allowing 

clustering); or data organized along 1 line in 𝑅2 (allowing dimensionality reduction). 

2. Problem definition: 

a. Input: iid data samples 

b. Goal: estimate the density probability distribution of the data 

3. Blind signal separation: advanced unsupervised learning task, and a special case of factor 

analysis. A signal consisting of the sum of 2 signals needs to be separated (e.g. 2 voices 

speaking together). 

4. Learning new concepts: for example, identify object in Google street view and separate 

them to clusters (cars, trees, signs…). That’s an unsolved problem. 

5. Unsupervised learning is very important since nowadays we can easily have tons of data, 

but it is difficult to get good labels of these data (required for supervised learning). 

6. Very modern algorithms do both unsupervised and supervised learning (self-supervised 

or semi-supervised), e.g. by producing labels and applying them. 

Clustering 
1. K-Means clustering: 

a. Goal: find the 𝐾 points which best correspond to center of clusters of the data. 

b. Algorithm: pick K random points in the space, then iteratively until convergence: 

i. Associate every data sample to the currently closest data center, yielding 

temporary clustering of the data. 

ii. Re-define the K data centers to be the centers (i.e. minimizers of 𝐿2 

distances) of the temporary clusters. 

c. Converges to locally optimal clustering. Global optimization is NP-hard. 

d. Problems: 

i. Local minima may prevent correct optimization. 

ii. High dimensionality derives too sparse feature space (as in KNN). 

iii. Lack of mathematical basis (“you might not care…, but for the sake of this 

class, let’s just care about it”). 

2. Gaussian learning (background for EM): 

a. Multi-variate Gaussian: 

𝑓(𝑥) = (2𝜋)−𝑁/2|Σ|−1/2 exp (−
1

2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)) 
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b. Gaussian learning: what is the best Gaussian fitting the data (i.e. maximizing the 

likelihood of the data)? 

c. 1D:  mean=𝜇 ≔average;  variance=𝜎2 ≔average quadratic deviation  (proven by 

log-likelihood maximization: 
𝜕 log(𝑃(𝑥1…𝑥𝑀|𝜇,𝜎))

𝜕𝜇,𝜎
= 0). 

d. N-D: generalized formula… 

3. Expectation Maximization (EM): 

a. Generalization of K-means, based on actual probability distribution and 

probability theory basis. 

b. The difference wrt K-means is that the assignments to classes are “soft” rather 

than “hard”, i.e. we find the relative correspondence to each class rather than 

choosing the most corresponding one. 

c. We assume that the data consist of sum of multi-variate Gaussians (Gaussian 

Mixture), and find the correspondence of every sample to every Gaussian. 

d. Initialization: pick 𝐾 random Gaussians centers (𝜇𝑖), deviations (Σ𝑖) and sizes (or 

priors, 𝜋𝑖). 

e. E-step: given the Gaussians parameters, compute the likelihood of every sample 

𝑗 to belong to every Gaussian 𝑖: 

𝑒𝑖𝑗 = 𝜋𝑖

1

(2𝜋)𝑁/2|Σi|
exp (−

1

2
(𝑥𝑗 − 𝜇𝑖)

𝑇
Σ𝑖

−1(𝑥𝑗 − 𝜇𝑖)) 

(up to normalization over all j’s) 

f. M-step: given the samples and their correspondence to the Gaussians, find the 

best Gaussians parameters: 

𝜋𝑖 =
1

𝑀
∑ 𝑒𝑖𝑗

𝑗

 

𝜇𝑖 =
1

∑ 𝑒𝑖𝑗𝑗
∑ 𝑒𝑖𝑗𝑗 𝑥𝑗 (weighted average of the samples 𝑥𝑗) 

Σ𝑖 =
1

∑ 𝑒𝑖𝑗𝑗
∑ 𝑒𝑖𝑗(𝑥𝑗 − 𝜇𝑖)

𝑇
(𝑥𝑗 − 𝜇𝑖)

𝑗

 

g. EM converges to local maximum of the likelihood 𝑃(𝑥𝑗|𝜋, 𝜇, Σ), or equivalently, 

to local minimum of the negative log-likelihood − ∑ log 𝑃(𝑥𝑗|𝜋, 𝜇, Σ)𝑗 , which is 

more convenient for computations. 

4. Choose 𝐾 in EM: 

a. Usually we don’t know the number of clusters in advance, thus we need to check 

that we don’t have either missing clusters (i.e. some domain of samples is poorly 

covered) or spare clusters. 

b. The popular method is to guess some 𝐾, then iteratively: 

i. Run EM. 
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ii. Using the cost function − ∑ log 𝑃(𝑥𝑗|𝜋, 𝜇, Σ, 𝐾)𝑗 + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑐𝑜𝑠𝑡 ∙ 𝐾 

(likelihood vs. cluster cost), check if there are unnecessary clusters (that 

without them the cost function becomes cheaper) and remove them. 

iii. If there are samples which are poorly covered (i.e. have some middle 

ground likelihoods), then add new random classes centers near these 

locations. 

c. This method overcomes local minima which utilize the K clusters poorly, since it 

identifies unnecessary clusters and can remove and restart their locations 

randomly. 

Clustering Algorithms (both intended for clusters concentrated around some centers) 

Algorithm Convergence 
Mathematical 
justification 

Dealing with local minima 

K-Means 

Yes 

- - 

Expectation Maximization 
(EM) 

Locally maximizing 
likelihood 

K estimation trick also 
partially overcomes local 

minima 

 

Dimensionality reduction 
1. Many data sets use more dimensions than needed. For example, faces in 50x50 images 

can be represented by much less than 2500 coordinates (we know, for example, that 

those coordinates allow representations of images of many other objects). In the example 

of faces, a compact representation would use Eigen-faces linear basis of around 12 basic 

faces, which are surprisingly enough to reconstruct a face. 

 

2. This unit deals with linear dimensionality reduction only. 

3. The main idea is to identify the directions of high variance, keep them only, and project 

the data onto them. 

4. Technically, this is implemented as follows: 

a. Fit Gaussian to the data 

b. Compute the eigenvectors of the Gaussian (i.e. of Σ) 
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c. Choose leading eigenvectors (by eigenvalues) 

d. Project data onto the chosen eigenvectors space 

5. Sounds like PCA, although the name is not mentioned. 

6. Scan example: 

a. Data are scans of people’s bodies (“body formations space”). The scan finds the 

surface of the body. 

b. The goal is to identify physiques (e.g. thick, tall etc.) and postures (e.g. standing, 

throwing etc.). 

c. Linear eigenvector decomposition finds that low linear subspace can express 

much such information. For instance, 3 dimensions can express variant thickness, 

height, weight and gender. 

d. The lecturer did it using a method named SCAPE (Shape Completion and 

Animation of People). 

e. Applications: 

i. Scanning completion (when partial or corrupted) 

ii. Motion animation 

iii. Bodies simulations 

7. Non-linear dimensionality reduction methods: 

a. Piece-wise linear projection: divide samples into clusters (e.g. by K-means), then 

project every cluster on its own linear subspace. 

b. Local linear embedding (LLE) (sounds like the same as above) 

c. Isomap 

8. Spectral clustering: 

a. When a cluster is not concentrated around some center (e.g. the samples lay on 

the edge of some shape), K-means and EM may fail finding the clusters. 

 

b. Spectral clustering uses Affinity Matrix to measure the similarity between every 

pair of points: 𝐴 ∈ 𝑅𝑀×𝑀, 𝐴𝑖𝑗  decreases with |𝑥𝑖 − 𝑥𝑗|. 

 

c. The affinity matrix can be easily decomposed by PCA. Every dominant eigenvector 

represents a cluster, and every dominant entry in the eigenvector corresponds to 

a sample belonging to the cluster. 
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9. In summary: 

a. Linear dimensionality reduction can be implemented using the eigenvectors of 

the covariance matrix Σ of the Gaussian fit (PCA?). 

b. Non-linear reduction can be implemented using modern methods such as LLE 

and Isomap. 

c. Clustering which identifies affinity (continuity) of data samples can be 

implemented by spectral clustering. 
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Representation with Logic 
The idea is to use the tools of logic (in particular first order logic) to model the world by compact 

representation. 

Propositional logic 
1. Binary variables (symbols) – either T or F (non probabilistic). 

2. Model = assignment of Boolean values to the variables. 

3. Truth tables – the basic rules of logic: definition of and/or/not/implying/equivalence. 

4. Given axioms (sentences assumed to be true), every variable value is T, F or unknown (as 

said before, no probabilistic terms). 

5. Sentences may be valid (true for every model), satisfiable (true for some model) or 

unsatisfiable (false for every model). 

6. The main strength of propositional logic is to identify sentences which are logically valid 

or unsatisfiable, independently of the assumptions (model). 

7. Limitations of propositional logic: 

a. Uncertainty – no probabilistic terms 

b. Objects – no objects, properties or relationships – only sentences (like in non-

OOP) 

c. Shortcuts – no compact tools to represent general sentences such as "all the kids 

are short" – we need to say it for every one by itself… 

First Order Logic 
1. Deals with limitations b & c of propositional logic (see above), by defining objects and 

general statements. 

2. The advanced representation of objects is demonstrated in the table: 

Theory World representation Beliefs 

First Order logic 
Structured representation: Relations, Objects 

(variables & constants), Functions 
T/F/? 

Propositional Logic 
Factored representation: statements combining 

atomic representations by logic gates  

Probability Theory 
Atomic representation: just different states which 

may either be satisfied or not 
[0,1] 

 

3. The shortcuts are allowed by the advanced syntax, including: 

a. Atomic sentences (expressing relations between objects) 

b. Operators combining sentences 

c. Quantifiers (all, exist) allowing general phrases 
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Planning 

Background: planning in stochastic and partially observable world 
1. AI – creating an agent which performs actions according to the situation ➔ planning is 

the core of that. 

2. Problem solving (section 2, e.g. A*) is good for deterministic & fully observable problems: 

a. It uses planning and executing, where the execution is "blind", i.e. doesn’t get 

feedback from the environment and doesn’t update the plan. 

b. Nice experiment showed that people don’t manage to walk in straight line 

without feedback from the environment. 

3. Properties of real problems (some of them seem mathematically equivalent): 

a. Stochastic – the results of an action may be non-deterministic by terms of the 

plan (e.g. drive straight somewhere should depend on the light in the traffic light, 

which is not part of the model of the world used for planning, thus may yield 

unexpected results). 

b. Multi agent – other agents take actions as well. 

c. Partial observability – for example a certain road may be closed and it may be 

announced in a sign before the road, i.e. not known in advanced. 

d. Unknown – e.g. incomplete map or inaccurate GPS. 

e. Hierarchical – the plan cannot include steps like "push the gas" but only high level 

instructions, so low level actions should be determined interactively. 

4. This section: 

a. Goal: problem solving – i.e. decide whether a problem is solvable and find a plan 

to solve it – in stochastic and partially observable world. 

b. Limits (next section): no distinguish between probable and improbable situations. 

Belief state space 
1. States are replaced by sets of states (same idea as Non-Deterministic Automats). A set 

contains all the currently-possible states. The exact state is unknown in case of partial 

observability (e.g. local observability). 

2. Goal: reach a subset of goal states. 

3. We need to reduce the set of states accordingly. 

4. Actions may have variant effects on states subset size: 

a. Reduce the size if different input states are mapped into the same output states. 

b. Reduce the size through observations which remove false states. Observations 

are represented by nodes (in addition to the standard decision/action nodes), and 

the agent does not control the output of these nodes. 

c. Increase the size if the action is stochastic, i.e. one input state may have variant 

output states. 

5. In stochastic world, sometimes no classic plan can solve the problem. For example, if we 

wish to get to the right, but every right move may fail and remain in the same place, then 

no sequence of right moves guarantees actually getting to the right. Thus new notion of 

plan is required. 
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6. Infinite sequence of actions can be defined by conditioned actions based on observations. 

In the last example, it can be "[(move right) while (location is left)]". This notion adds 

branches to every plan (in addition to the branches in the decision tree, which decide 

between plans). 

7. A plan is successful iff all the leafs in the plan tree are goal states. 

8. A solution is bounded in time iff its tree has no loops. 

9. Compact representation of belief states (i.e. sets of states) can be used by descriptive 

variables. For example, if the world is defined by 4 binary variables, sometimes a set of 8 

states (out of the possible 16) can be described just by the value of one of those variables. 

Classical planning 
1. Problem definition: 

a. State space: K-Boolean (2^K states). 

b. World state: complete assignment (every variable has value). 

c. Belief state: complete or partial assignment, or even formulas of variables. 

d. Actions: every action has pre-condition and effect in terms of relations of objects 

(as in logic). 

2. Finding classical plan: 

a. Forward/Progression search: start from initial state and search over possible 

actions. 

b. Backward/Regression search: start from goal state and search backward over 

sufficient actions (e.g. if I want to buy a certain book, I won't go over all possible 

purchases, but rather look at the purchase which can end up with me having that 

certain book, i.e. Buy(this_certain_book)). 

c. Plan space search: start from abstract plan like "[initial state → goal state]", and 

refine the plan until it's complete. It's unclear in the lecture how to do that. 

3. Nowadays, forward search is the most popular of the three, since modern search plans 

use heuristics to reduce the space of possible choices, and heuristics work more efficiently 

with concrete possible actions (rather than hypothetical actions and states as in 

regression and plan space search). 

4. Heuristics can be achieved by simplified actions, ignoring pre-conditions or negative 

effects. Having the representation of actions, the heuristics can be defined automatically 

by the program. 

Situation calculus 
1. Represent planning in terms of First Order Logic, to allow advanced goals such as "move 

all cargo to this airport". 

2. Since the problem is represented as a theorem in FOL needed to be proved, it can be 

solved by a general theorems prover of FOL. 

3. Representations: 

a. Actions and situations are represented by objects. 

b. Pre-conditions are formulas of the form "Conditions → Possible(certain_action)". 
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c. Conventionally, an action is a function whose last argument is the input state. 

d. Initial state and goal are defined by sets of formulas. 

4. Successor state axiom – defines the flow of states: 

a. ∀𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑎𝑡𝑒: 𝑃𝑜𝑠𝑠(𝑎, 𝑠)➔[some fluent is true iff (𝑎 made it true OR it was 

true in 𝑠 and 𝑎 didn’t undo it)]. 

Planning under Uncertainty 

MDP 
1. Markov Decision Process is planning tool for stochastic, fully observable environment. 

2. The world’s representation is a graph of states (nodes) and actions (edges) as in 

conventional planning (e.g. situation calculus), except that the transitions between states 

are not deterministic, but rather based on probabilistic transition matrix, i.e. every edge 

splits in the middle. 

3. Problems with conventional planning (searching over decisions tree): 

a. Large branching factor: Decisions trees grow very rapidly, especially when there 

are many possible actions outcomes (as in stochastic environment). 

b. Trees may become too deep. In particular, loops (caused by uncertainty) make 

them infinitely deep.  

c. The same states are visited many times in the tree, which is very inefficient 

representation, since usually we would like to do the same action in the same 

state. 

4. Policy: 

a. For every state, choose the best action among available ones. 

b. Compact representation – every state appears only once. 

c. For every state we define reward/cost achieved by getting to the state. The value 

of a plan 𝜋 applied from a state 𝑠 is 𝑽𝝅(𝒔) = 𝑬[∑ 𝑹𝒕𝒕 |𝒔𝟎 = 𝒔]. 

d. Expressing cost of time: 

i. Add constant cost to every state, giving motivation to avoid visiting the 

state repeatedly. 

ii. Add discount factor reducing the reward when loosing time, by defining 

the value as 𝐸[∑ 𝛾𝑡𝑅𝑡𝑡 ]. 

5. Value iteration: how to find a policy with high value? 

a. Define value for every state, derived from both its inherent value and the values 

of its neighborhood: 

i. Start with the inherent values of the states {𝑣(𝑠) = 𝑅(𝑠)}. 

ii. Every iteration, re-define the value of every state, by assigning the best 

expected value that can be achieved in the following step (back-up 

equation): 

𝑣(𝑠) = [max
𝑎

𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑣(𝑠′)

𝑠′

] + 𝑅(𝑠) 
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iii. (Exceptions are terminal states remaining with 𝑣(𝑠) = 𝑅(𝑠).) 

iv. Convergence is guaranteed. 

b. Now the optimal policy is just the actions which maximize the expected values of 

the states (same as the back-up equation, but with 𝑎𝑟𝑔𝑚𝑎𝑥  rather than 𝑚𝑎𝑥…). 

6. Summary: 

 

POMDP 
1. MDP cannot express information gathering, since it represents fully observable world. 

2. Partially Observable Markov Decision Process: represent partial observability by 

duplicating the whole states space according to available information. Gathering 

information transforms us to the relevant copy of the states space. 

3. Demonstration: A* (fully observable & deterministic world), MDP (fully obs. & stochastic), 

and POMDP (partially obs. & stochastic). 
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Reinforcement learning 
1. In the previous sections we tried to get to states with large reward. In this section we will 

see how to plan when we don’t know the rewards of the states and the probabilities of 

transitions between them. 

a. Quite similar to the challenge of POMOP. Maybe the difference is that here we 

also use machine learning (they said something about it before…). 

2. Reinforcement learning was successful, for example, in playing backgammon (6-besh) 

and controlling helicopter remotely. 

3. Reinforcement learning is a form of learning, additional to supervised ({𝑥𝑖, 𝑦𝑖}) and 

unsupervised ({𝑥𝑖}) learning. In this form of learning, we have sequences of states and 

actions ({𝑠𝑖}, {𝑎𝑖}), and rewards associated with certain states. 

4. Goal: find the optimal policy, i.e. what is the optimal action in every state. 

5. Types of agents of reinforcement learning: 

a. Utility-based agent: given the transitions probabilities 𝑃, it learns the rewards 

𝑅(𝑠) of the states and uses 𝑃 and 𝑅 together for planning (as before). 

b. Q-learning agent: learns the utility function 𝑄(𝑠, 𝑎) of performing certain actions 

on certain states, then uses 𝑄 without explicitly associate rewards 𝑅(𝑠) to the 

states. 

c. Reflex agent: learns the optimal behavior on every state 𝜋(𝑠) and uses it even 

without predicting the utility. 

 

6. Passive RL vs. Active RL: 

a. Passive reinforcement learning learns the environment on-the-way, i.e. without 

affecting the policy of actions. 

b. Active reinforcement learning learns the environment and changes the policy 

interactively – both to improve the utility and to allow additional exploration of 

the environment. 

7. Passive Temporal Difference learning: a basic passive RL method, assuming the rewards 

of states are locally observable. 

a. Basic idea: run some policy a lot of times, and every time update the utility of 

every state according to the utility of the one followed it. 

b. Algorithm: use some arbitrary policy 𝜋 and run it iteratively from an initial state. 

On every run, on every step of the policy: 

i. If the output state 𝑠′ is new: define its utility 𝑈(𝑠′) ≔ 𝑟′. 

ii. Increment the counter of visits at the input state 𝑁(𝑠). The learning rate 

will depend on 𝑁, since we wish to use smaller updates as we have more 

visits (hence more confidence) in the state. 
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iii. Update the utility of the input state 𝑠 according to its own reward 𝑟, the 

output state utility 𝑈(𝑠′), and some learning rate 𝛼(𝑁(𝑠)) (𝛾 is discount 

factor as in previous section): 

𝑈(𝑠) ≔ 𝑈(𝑠) + 𝛼(𝑁(𝑠))[𝑟 + 𝛾𝑈(𝑠′) − 𝑈(𝑠)] 

iv. Optional: update previous states as well (that changes the algorithm from 

TD(0) to TD(1)). 

1. Meaning of the modification: in s1->s2->…->sn, U(s1) will give up 

on U(s2) in favor of U(sn), while summing all r1…rn on the way. 

2. TD(0) updates U(s1) with info about s2 taken from all the data of 

s2 (using U(s2) directly). 

3. TD(1) updates U(s1) with info about s2 taken only from scenarios 

in which s2 followed s1 (replacing U(s2) by the actual future 

rewards in those scenarios). Hence TD(1) does not assume the 

Markov Property (s2 is used for U(s1) merely in scenarios where 

s1->s2), but as a result it exploits much less data, and is sensitive 

to the paths of states that occurred in the specific scenarios that 

passed through s1. 

c. It is also possible to update K-steps back (rather than 1 step as in TD(0) or ∞ steps 

as in TD(1)). Usually a weighted mixture of K’s is used, where the weighting is 

implemented through a parameter 0 ≤ 𝜆 ≤ 1, yielding 𝑻𝑫(𝝀). 

d. This method performs not so good, mostly because it is passive: 

i. The chosen policy affects both the sampled states and their estimated 

utilities. 

ii. It may miss some states, not assigning any utility to them. 

iii. It may visit states only few times because of low probability – yielding 

unreliable estimates. 

iv. It takes a lot of time to converge at all. 

8. Greedy reinforcement learner: active RL method. 

a. Same as passive temporal difference, but updates the policy 𝜋 every one or 

several iterations. 

b. The policy is updated to be optimal in terms of MDP wrt the current utilities 

estimates. 

c. Greedy → may converge to non-optimal policy. 

i. Solution 1: try frequent random deviations from policy (as in genetic 

algorithms) – can work but converges very slowly. 

ii. Solution 2 – Exploration Agent: force assignment of constant large utility 

𝑈(𝑠) ≔ 𝑅 to states that were not explored enough yet (𝑁(𝑠) < 𝐶), so 

that the agent will tend to explore them. When 𝑁(𝑠) ≥ 𝐶, go back to 

assign the true estimator of 𝑈(𝑠). 

9. Q-learning: 

a. The exploration agent can get estimation of the rewards of the states 𝑟(𝑠). 

However, unless we know the transitions probabilities 𝑃(𝑠′|𝑠, 𝑎), we cannot 

derive the correct policy. 
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b. Thus, Q-learning gives up on learning 𝑃 and 𝑈 in order to maximize 

∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)𝑠′ , and instead tries to maximize directly ∑ 𝑄(𝑠, 𝑎)𝑠′ . 

c. The algorithm is similar to the exploration agent, but with exploration over pairs 

(𝑠, 𝑎) rather than states only, which may enlarge the exploration space 

significantly. 

d. The iterative utility estimation is generalized from TD (Temporal Difference): 

𝑄(𝑠, 𝑎) ≔ 𝑄(𝑠, 𝑎) + 𝛼[𝑟(𝑠) + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

10. Function Generalization to large state spaces: 

a. The methods described in this section have to explore the states space, which is 

typically huge. 

b. The practical solution is: 

i. Explore only some of the states. 

ii. Identify conceptually similar states in order to generalize learning to un-

explored states. 

c. To implement that, we have to represent the states space in advance by terms of 

relevant features rather than the “exact real state”. 

i. Too many features → too big states space + unimportant features 

prevent generalization between similar states. 

ii. Too few features → essentially different states are identified as similar. 

d. In terms of features {𝑓𝑖}, the utility can be formed as 𝑄(𝑠, 𝑎) = ∑ 𝑤𝑖𝑓𝑖𝑖 , where 

the goal of the learning process is to update the weights {𝑤𝑖} of the features. 

e. This method essentially forms the agent problem as supervised learning problem: 

i. The input is the features array 𝑓1 … 𝑓𝑑. 

ii. The output is the utility 𝑄(𝑠, 𝑎) = 𝑄({𝑓𝑖}). 

iii. The “brain” model is 𝑄 = ∑𝑤𝑖𝑓𝑖. 

iv. The learning is based on the empirical utilities of the explored states and 

actions. 
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11. In summary, we saw several methods, each one based on the former, and only the last 

one is practically scalable to effectively explore large states spaces: 

Method Description Type Exploration 
Local 

minima 
overcome 

Exploration 
space 

Convergence 

Passive Temporal 
Difference (TD) 

Run policy iteratively 
& update utilities 

Utility-based 
(𝑃 is 

required) 

Passive 

No 

States of 
current 

policy only 
Very fast 

Greedy 
Reinforcement 

Learner 

TD + Update policy by 
MDP on estimated 

utilities 

Active 

States of 
greedy 
policy 

Fast 

Random 
Reinforcement 

Learner 

Greedy + Add random 
deviations from policy 

Yes 

All states 

Slow 

Exploration Agent 
Greedy + Add 

deviations towards 
un-explored states 

Fast 

Q-learning 
Exploration over 

states and actions 
Q-learning 

States & 
actions 

? 

Generalization 
Q-learning + features-

based utility 
Q-learning + 
supervised 

Features ? 
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Hidden Markov Models and Filters 

HMM 
1. A lot of buzz introduction – very effective in robotics, medical, finance, speech 

recognition, language… 

2. HMMs are used for analysis and prediction of time series. 

a. Prediction = what is the state going to be at time 𝑡? 

b. Analysis = state estimation = given certain measurements at times 1, … , 𝑡, what 

is the (internal or hidden) state at time 𝑡? 

3. Time series can be represented by simple case of Bayes network – {𝑠𝑖 → 𝑠𝑖+1} – forming 

a Markov Chain. Every state emits a measurement 𝑧𝑖(𝑠𝑖), which is the only observable 

thing in the process (thus the state is hidden). 

4. This model is also the core of probabilistic filters such as Kalman Filters and Particle 

Filters. 

5. Localization Problem Example: A robot navigates a building, and wants to know its 

location given a map and range sensors. In this case, the time series is the location as 

function of time, and the measurements are the ranges measured to the walls. An 

advanced variant of the problem is not having the map, and building it from scratch on 

the fly. 

6. Markov chain can be represented by transitions matrix 𝑃𝑖𝑗 = 𝑃(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖). A 

stationary distribution of such chain is the asymptotic distribution, and satisfies 

∀𝑖: 𝑃(𝑠 = 𝑖) = 𝑃(𝑃 ∙ 𝑠 = 𝑖). 

a. Ergodic Markov chain = has unique stationary distribution = initial state 

knowledge fades over time. Rate of convergence to stationary distribution is 

called mixing speed. 

b. Estimating the transitions matrix: it can be found empirically using maximum 

likelihood, i.e. by 𝑃𝑖𝑗 ≔
|{𝑠𝑡=𝑖 𝑎𝑛𝑑 𝑠𝑡+1=𝑗}|

|{𝑠𝑡=𝑖}|
 , possibly using Laplacian smoothing (i.e. 

adding some uniform-distributed samples to prevent overfitting). 

7. State estimation: 

a. Our problem is hidden, i.e. we know only the measurements rather than the 

states. Thus, the empirical estimation has to be indirect, based on 𝑃(𝑧|𝑠). The 

perdition has to be based on both 𝑃(𝑧|𝑠) and 𝑃(𝑠𝑡+1|𝑠𝑡). 

b. The estimate of the current state given past measurements is essentially a 

convolution of the distributions of the states given the measurements 

{𝑃(𝑠𝑡|𝑧𝑡)}𝑡, each normalized according to prior and transitions probabilities 

{𝑃(𝑠𝑡|𝑠𝑡′<𝑡)}𝑡. 

Particle Filters 
1. Particle filters basic idea: 

a. Represent the belief state using "particles" randomly assigned to various actual 

states. 

i. Allows us to work with continuous spaces. 

b. Every action changes the state of every particle accordingly. 

c. Every measurement changes the probability of every particle to represent the 

correct state. Particles of very low probability can be omitted (filtered). 
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2. Sampling-based Implementation: 

a. Rather than keeping “actual particles” along with their probabilities, we keep the 

distribution of the current state. Every step, we resample the particles multiple 

times using this distribution, then use the samples to produce the distribution of 

the next step, based on the new measurements. 

b. In this implementation, computational resources are proportional to state 

likelihood, producing inherent computational efficacy. 

3. Algorithm: 

a. Input: 

i. 𝑆 = {(𝑥, 𝑤)} initial particles with uniform importance weights 

ii. 𝑈  controls (transitions matrix?) 

iii. 𝑍  new measurements 

b. Until convergence of particles distribution: 

i. 𝑆’ = 𝜙 

ii. For 𝑖 = 1 … 𝑛 

1. Sample a particle 𝑠𝑖 from the distribution of 𝑆 

2. 𝑥′~𝑃(𝑥′|𝑈, 𝑠𝑖)  predict next state of 𝑠𝑖 

3. 𝑤′ = 𝑃(𝑧|𝑥′)  assign importance weight according to 𝑧 

4. 𝑆′ = 𝑆′ ∪ {(𝑥′, 𝑤′)} update new particles set 

iii. 𝑤′ = 𝑤′/𝑠𝑢𝑚(𝑤′)  weights normalization 

iv. 𝑆 = 𝑆′ 

c. That easy to implement! 

4. Problems: 

a. High-dimensional spaces require exponentially many particles to fill the space. 

i. Rao-Blackwellized particle filters and others try to generalize for high 

dimensions. 

b. Degenerate conditions – too few particles, too deterministic environment, etc. – 

this is unclear. Probably some randomization is needed to guarantee 

effectiveness. 

5. Advantages – which make particle filters VERY useful in many applications: 

a. Easy to implement. 

b. Manage computational resources efficiently. 

c. Can deal with complex posterior distributions containing many peaks. 
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Summarizing Table 
Planning 

 

Comments

Method
World 

Representation
Brain Learning Stochastic

Partially 

Observable
Continuous Optimality Completeness Time Memory Demonstration Applications

BFS (Breadth 

First Search)
Expand close nodes

O(n+m) (nodes & 

edges)

CFS (Cost First 

Seach)
Expand cheap nodes

O(n+m) - but more 

eff icient than BFS

I think I have example for incompleteness: tree 

w ith one branch of costs 1/2,1/4,1/8… and 

one brach of one cost 1. CFS & DFS w ould fail 

all the same…

DFS (Depth First 

Search)
Expand deep nodes X

X (for infinite 

tree search)

MAY be faster if  

destination is deep 

and w e are lucky…

O(h) (h is height of 

tree)

deep & branching tree 

under memory 

constraints; or just 

w hen destination 

expected to bee close 

to a leaf rather than to 

the root

usually staff 

dealing w ith 

connectivity 

components

A*
Expand heuristically 

cheap nodes

V (assuming 

optimistic 

heuristic)

V

O(n+m) - more 

eff icient as the 

heuristic is better

O(exp(h))

tree search path planning in 

roads map

Situation 

Calculus

FOL – objects, 

variables & formulas

General theorems 

prover
? X V ? V ? ?

theorems provers and their properties w ere 

not discussed

Particle filters

Variables describing 

states; particles 

representing beliefs

Actions -> new  

observations -> assign 

probabilities to particles

Possible to use any 

Reinforcement learner 

w hile exploring

V V V

not defined w rt 

unknow n 

environment

X (crow ded 

particles 

required)

~ N_particles X 

N_steps

~ Number of 

particles 

(exponential w rt 

dimensionality)

quite versatille and not exactly search 

algorithm; managing computational resources 

on the f ly according to updated probabilities

Rao-

Blackwellized 

particle filters

generalization of particle f ilters to be scalable 

to high dimensions

MDP (Markov 

Decision Tree)

Graph of states & 

actions
X ~ Number of nodes

maze solver w ith 

possible loops

driving in a w ell 

know n 

environment

POMDP (Partially 

Observable 

MDP)

Graph of states & 

actions – duplicated 

by unobservability. 

Observations move 

us to another copy 

of the states space

little and 

defined (each 

unobservable 

node 

duplicates the 

states space 

exponentially)

~ Number of nodes 

X (possible options 

for unobservable 

nodes ^ number of 

unobservable nodes)

maze solver w ith few  

signs needed to be 

read

some unclear 

uses in 

w ikipedia, e.g. 

conservation of 

Sumatran tigers

TD (Temporal 

Differences)

Variant of value-

iteration - but the 

rew ards are observed 

w hile applying some 

policy (rather than 

know n in advance)

Very slow  (passive -

> policy is not 

intended to search)

learn utilities of ship 

navigation WITHOUT 

the authority to 

influence the navigation

after the f irst empirical iteration, w hy do w e 

need to repeat the experiment, rather than just 

applying value iteration based on the observed 

inherent rew ards?     Note: transitions 

probabilities required for deriving policy from 

the rew ards found

Greedy learner

As in TD, but w ith 

updating the policy 

once a w hile according 

to the estimated 

rew ards (active rather 

than passive)

Exploration 

agent

As in Greedy learner, 

but w ith additional cost 

to explored states - 

forcing further 

exploration

Q-exploration 

agent

Pairs of states & 

actions

V (both 

rew ards & 

transitions)

Function 

Generalization

Features 

characterizing the 

states eff iciently

V V

Overcoming 

local minima; 

sensitive to too 

simplif ied 

representations

Up to properties 

of states w hich 

are not 

represented

learn how  to play 

packman (lots of 

states but many states 

are similar)

Reflex agent – 

learn utilities of 

policies

-

w as not discussed except from the main idea - 

 learn w hat to do in every state, even w ithout 

predicting the utilities of the possible actions

very large space to explore! (|S| x |A|)

?

eff icient representation of states space 

allow s scalability

learn utilities of ship 

navigation WITH the 

authority to influence 

the navigation
playing 

backgammon, 

controlling a 

helicopter, etc.

Just pick the max of 

U(s,a) given s

As in Exploration Agent, 

but measuring U(s,a) 

rather than R(s)

X (explored states and estimations 

are sensitive to chosen policy)

Greedy (explored states and 

estimations are sensitive to policies)

Overcoming 

local minima

V (assuming the 

already-explored 

cost is large 

enough)

Going over nodes 

rather than paths - 

more eff icient for 

loops and many 

branches

V (assuming 

f inite states 

space…)

VX

Properties Examples

?

V O(exp(h))V

Self localization in 2D/3D environment

tree search path planning in 

roads map

"move all cargo to certain airport" using 

w ell-defined actions

Robustness: Conditions Allowed

X X X

Mostly 

observable 

w orld

Value iteration + 

greedy maximization
-

Methods Main Idea

Category

Planning – 

agent in 

environment 

chooses 

actions in 

states

Searching – 

f ind a desired 

state

Graph search – 

discrete w orld

Graph of states & 

actions
-

World search – 

continuous 

w orld

Planning under 

uncertainty – 

f ind beneficial 

policy

X

VReinforcement 

learning –learn 

beneficial 

policy (sà a)

Utility-based 

agent – learn 

utilities of states

Q-learning 

agent – learn 

utilities of 

actions in states

V

Graph of states & 

actions (unknow n 

rew ards)

Any planning algorithm 

(the agent just f inds 

the rew ards). 

Transitions 

probabilities are 

needed to f inally derive 

the policy from the 

rew ards, e.g. by MDP.

V 

(unobservable 

 rew ards, 

observable 

transitions)
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Data Learning 

 

Comments

Method Model ("Brain") Learning - minimize Loss parameters scalability
margins 

maximization
Demonstration Applications

Linear W1*x+W0 analytic minimalization

Logistic 1/(1+exp(W1*x+W0))

Neural Networks

linear + pairwise 

nonlinear + 

composition

~ as above X 

number of layers

Probabilistic 

Inference
Bayesian Network experimental sampling

for N k-nary vars 

with ni parents 

each:

The network structure 

allows reduced number 

of basic probabilities 

(as noted in the left, 

wrt k^N)

-

SPAM filtering 1. Naïve Bayes is a simplified case 

of disconnected net (i.e. independent 

variables).     2. The principles of D-

separation and Variables Elimination 

allow computing and measuring 

certain dependencies in the net.

Perceptron sign(W1*x+W0) GD (n+1) X m X

SVM

feature coordinates 

x_{n+k}(x_1,…,x_n) 

+ linear separation

? ?

implicit representation 

of features is somehow 

supposed to allow 

scalability

V?

define 

x3=(x1 2̂+x2 2̂) to 

allow classification 

by radius

Boosting ? ? ? V?

KNN
majority class among 

nearest neighbors
memorizing data 0

only for <~20 

dimensions - data 

density requires 

exponential increase

-

HMM

Hidden Markov Chain 

+ measurements of 

its sequencial 

variables

experimental sampling

n 2̂ transitions 

probabilities for n 

states

-

Analysis & 

prediction of time 

series in robotics, 

medicine, etc.

K-means K centers of clusters

randomize centers; then until 

convergence: {assign clusters; 

update centers}

K

data density requires 

exponential increase in 

dimensionality

Not strong enough mathematical 

basis.

EM
K distributions of 

clusters

As in K-means, but cluster 

assignments and distribution 

updates are probabilistic rather than 

deterministic

K X (parameters 

per distribution)

K can be determined dynamically, 

through: 1. detection and removal of 

clusters with low contribution to the 

log likelihood; 2. detection of "middle 

ground" likelihoods and addition of 

close centers.

Spectral 

Clustering

Affinity matrix (based 

on some function of 

similarity/distance 

between data points)

PCA of the affinity matrix 

(representing continuity of data 

points) + assignment of clusters 

according to dominant eigenvectors

PCA 
Linear coordination 

transformation

Fit data by one multi-dimensional 

Gaussian, and choose 

coordinations according to its 

leading eigenvectors

only cutoff 

(determining 

number of 

dimensions)

Eigen-faces, Body 

scan properties

Was not named PCA in the lecture, 

but I'm quite sure this is it.

LLE 

Piecewise (local) 

linear coordination 

transformation

Clustering (e.g. K-means) + linear 

projection (i.e. PCA) of each cluster

number of clusters 

AND dimensional 

cutoff for each 

cluster

The lecturer talked about Piecewise 

linear projection and Local Linear 

Embedding, which are probably the 

same one.

Isomap 
Was not explained in the lecture, 

except for being non-linear.

Spectral 

Clustering

Affinity matrix (based 

on some function of 

similarity/distance 

between data points)

PCA of the affinity matrix 

(representing continuity of data 

points) + assignment of clusters 

according to dominant eigenvectors

Clustering

-

?

(n+1) X m

-

Properties ExamplesMethods Main Idea

Category

Data learning – 

analyze data 

and generalize 

to unknown data

Supervised – 

learn to predict 

output from 

input 

(data=({x,y}) Classification - 

output is 

discrete

Unsupervised – 

learn structures 

in data and 

represent their 

distribution 

(data={x})

Dimensionality 

reduction

Regression - 

output is 

continuous or 

at least ordered
GD
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Regularization of Supervised Learning 
Regularization = overfitting prevention = reducing the sensitivity of the learnt parameters to the training data. 

1. Data manipulation – Laplace smoothing: "smooth" the train data by adding fictive uniformly-distributed samples – preventing overfitting 

caused by non-representative data. 

2. Cross validation: measure generalization error rather than training error. 

3. Complexity penalty in Loss function: allow only "cost-effective" influence of the data on the learnt parameters. 

4. Design of insensitive model: 

a. Reduce degrees of freedom (e.g. reduce number of parameters in NN or in polynomial interpolation). 

b. Avoid too local learning (e.g. use large enough K in KNN). 
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PART II: APPLICATIONS OF AI 

Games 

General 
1. Games usually have strictly defined rules and environment, hence they are convenient 

for AI applications. 

2. However, the methods learnt so far were not intended for adversarial tasks (against 

opponents). 

3. Different games have different properties in terms of AI tasks. For example, wrt 

stochasticity, partial observability, unknown and adversary, we have: 

 

Chess modeling 
4. In chess-like games, where we have 2 players with turns and eventual 0-sum profit, the 

game can be modeled by a tree, in which every node is either: 

a. “maximization node” of player I 

b. “minimization node” of player II (minimizing p1 profit = maximizing p2 profit) 

c. “value node” defining the profit of the players directly 

d. “chance node” representing stochasticity and evaluated by expectation 

5. The values of the nodes and the strategies of the players can be derived by backward-

induction (or recursively) from the value nodes, through the maximization & minimization 

nodes. For example: 

 

6. In chess we have about m=30 moves per game, with about b=40 possibilities per move, 

yielding about 𝑏𝑚 = 4030 = 1048 nodes, which cannot be practically searched. 

7. Approaches for efficient game tree search: 

a. Reduce b: 

i. Not all the nodes have to be scanned. 

ii. Specifically, suppose P1 can guarantee value v1=3 by action a1=1 (see 

example above); and suppose that a=2 leads to a branch where P2 can 
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force value of 2. Then we don’t have to scan further children of a2, since 

necessarily v2<=2, thus P1 won’t choose a2. 

iii. No loss of correctness – we just skip unnecessary checks. 

iv. It is claimed that by efficient implementation we can have sqrt(b) instead 

of b, i.e. 𝑇 = 𝑂 (𝑏
𝑚

2 ). 

b. Reduce m: 

i. We can just cut the tree in a certain depth  𝑚̃ < 𝑚. 

ii. The backwards-induced values are replaced by heuristic values → only 

approximated solution. 

iii. The heuristic values can be assigned by either expert analysis or 

supervised learning (e.g. evaluating the states by “empirically, how 

probable is it to win from this situation?”). 

iv. The horizon effect: assume that we look 𝑚 steps forward in the tree, and 

update our search & decision every step. After moving from s1 to s2, we 

get new info and may “regret” and go back to s1 (if the game allows that). 

In this situation, we will have an infinite loop due to the limit of the 

horizon. 

v. The evaluation of chance nodes is very sensitive to the heuristic. For 

example, when choosing between [50-50 lottery of 0 and 3] and 

[guaranteed value of 2], by expectation the last is preferred. However, by 

taking squares of the heuristic values, the first becomes better. 

c. Graph representation: 

i. Not very clear. Clearly, graph may represent the problem more compactly 

since there are no repetitions and no memory (we don’t care how we got 

to a state). 

ii. They say that we can build graphs for decisions in the common states of 

the beginning and the ending of a game, possibly based on empirical 

outcomes. For less common states in the middle of the game, some 

unclear approach (“killer move”) can be used. Yet the point of graph vs. 

tree is unclear. 

8. Summary: the general approach for turn-taking games analysis is as follows: 

 

The game-dependent analysis deals with determining the cutoff and evaluating the values 

heuristically. 
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Game Theory 
1. Concepts of "good" strategies: 

a. Dominant strategy (of a certain player): better than all other strategies, 

independently on all others' decisions. 

b. Equilibrium (one strategy of each player): no one can benefit from changing only 

his strategy. 

c. Pareto Optimal (one strategy of each player): there isn't other possible outcome 

which would be better for everyone. 

2. Note that often a unique equilibrium is not Pareto Optimal, i.e. rational egocentric 

behavior yields bad results for everyone, whereas cooperation could improve the 

outcome for all the players. 

3. Mixed strategies: 

a. The rational behavior might be random. 

b. The randomization can be exposed to the rivals, but the actual decision must be 

kept as secret. 

4. Mixed strategies equilibrium problem can be solved algebraically and represented 

geometrically (minmax problem, simplexes, etc.) as taught in Game Theory class. 

5. Being seen as irrational can be beneficial – e.g. by making threats more realistic. 

6. Scalability: since the games tend to be very complicated, often we merge sets of states to 

have a simplified, approximated description of the game, which can be analyzed 

computationally (e.g. replace exact card value by "lower or higher than 10"). 

7. Game Theory pros & cons: 

a. Deals with: Uncertainty, Partial Observability, Multi Agents, Stochastic outcomes. 

b. Out of scope: unknown actions, continuous actions, irrational opponents, 

unknown utilities. 

8. Mechanism design: determine the rules of a game to be beneficial for the players or the 

designer. Some considerations are external, such as making the game simpler by 

existence of dominant strategies for the participants. 

9. Second-price auction: 

a. Winner is the highest bid; price is the second highest bid. 

b. The dominant strategy is to offer the value of the product 𝑥1 = 𝑣: 

i. Assume 𝑥1 > 𝑣: 

1. If 𝑣 < 𝑥1 < 𝒙𝟐 then we win the bid but pay more than 𝑣 and get 

negative value instead of 0 value. 

2. If 𝑣 < 𝒙𝟐 < 𝑥1  then we lose the bid and gets 0 value anyway. 

3. If 𝒙𝟐 < 𝑣 < 𝑥1 then we win and pay 𝑥2 anyway. 

ii. Assume 𝑥1 < 𝑣: 

1. If 𝑥1 < 𝑣 < 𝒙𝟐 then we lose the game anyway. 

2. If 𝑥1 < 𝒙𝟐 < 𝑣 then we lose the game although we could win it. 

3. If 𝒙𝟐 < 𝑥1 < 𝑣 then we pay 𝑥2 anyway. 
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c.  This is a Truth Revealing mechanism – the dominant strategy is to offer the true 

value! 
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Advanced Planning 

Time 
1. Problem definition: 

a. Goal: complete a list of tasks in shortest time 

b. Restrictions: every task requires previous tasks to be completed 

2. Given that the start state starts at time 0, the “time values” of states can be defined 

recursively: 

a. Earliest Start Time (ES): earliest possible time to reach the state = the time 

needed to complete all previous tasks. 

b. Latest Start Time (LS): latest possible start time that allows completing all the 

tasks in the shortest time. 

Resources 
1. Resources can be represented in planning as variables. However, if we have n units of 

some resource (e.g. 10 apples), it is inefficient to represent them by n variables – it wastes 

both search time and memory. Thus we wish to represent the quantity of the resource 

directly. 

2. To apply that, every action gets CONSUME property in addition to the CONDITION and 

EFFECT properties. 

Hierarchical Planning 
1. Hierarchical Task Network (HTN): every step in the plan has sub-steps… 

2. Refinement planning: add abstract actions in variant levels. Each such abstract action, 

named refinement, implements an action of some level using actions of a lower level. A 

refinement is defined by pre-condition and steps of low-actions. A high level task may 

have multiple refinements achieving variant outcomes. This abstraction allows effective 

planning. 

3. Theorem: a HTN achieves a goal iff for every part (i.e. every abstract action), there exists 

a refinement that achieves the goal. 

4. Reachable states for planning in HTN: 

a. Assume that we know the possible outcomes of a high-level action. 

b. We can apply the action and keep the possible outcomes (as in stochastic actions, 

but this time the uncertainty is derived from lack of decision). 

c. Eventually, we can look for the intersection between the states we’ve reached 

and the goal states. If such intersection exists, we can choose the refinements of 

the actions accordingly in order to reach it. 

5. When the reachable states of an abstract action are unknown, we can approximate them 

instead (e.g. use bounds on the possible outcomes of the actions – certainly possible 

outcomes as lower bound and maybe-possible outcomes as upper bound). 

a. Goal states intersect lower bound = goal can be guaranteed 

b. Goal states intersect upper bound = goal may be guaranteed 

c. Goal states don’t intersect upper bound = goal can’t be guaranteed 

Perception 
1. Just add percept actions that are intended to sense the environment… 
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Computer Vision 

Background 
1. Computer vision: “making sense out of images or video”. 

2. Pin-hole camera: simple camera with no lens – just letting the photons pass through a 

pin-hole. The image of an object is given at size 𝑥 = 𝑋
𝑓

𝑧
, as we saw in class in 2004 (using 

equal triangles). 

a. ➔ parallel lines become non-parallel in image. As the lines get far from the 

camera, they converge into a common vanishing point. 

3. Lens: 

a. Pinhole camera is limited by the power of light passing through the pinhole, which 

must be very small in order to allow focused images. The small hole both reduces 

the amount of light and may even cause light diffraction (bending over the edges). 

b. A lens focuses different light rays, hence it allows enlarged hole and much more 

light getting to the detectors. 

c. Lens equation: 
1

𝑓
=

1

𝑍
−

1

𝑧
 

4. Computer vision tasks: 

a. Classify objects 

b. 3D reconstructions 

c. Motion analysis 

2D Image Analysis 
1. Objects recognition: recognition is essential for all the tasks mentioned above. A 

recognition algorithm is required to be invariant to: 

a. Scale 

b. Illumination 

c. Rotation 

d. Deformation 

e. Occlusion 

f. View point (a difficult one – the object may change a lot!) 

2. Extracting Features = telling things about the image. 

3. Linear Filter = convolution = sum (or diff) of pixels, defined by a kernel, i.e. a mask. 

a. It can be used, for example, to identify edges of a certain direction: 𝐼𝑥 =

𝐼⨂[−1,1] is a vertical lines detector (such lines will have large values after the 

convolution). 

b. Gradient Image – 𝐸 = √𝐼𝑥
2 + 𝐼𝑦

2 –  can be used to identify edges generally! (note 

that the filter is not linear anymore) 

c. Canny edge detector – a more advanced filter to detect edges. It mainly applies 

gradient filter, then removes pixels which are not the highest in their 

environment – to get thinner lines. 

d. Other kernels: 
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i. Sobel, Prewitt: symmetric numerical approximations for “derivation” of 

the image – 𝐼⨂ [
1 0 −1
𝑑 0 −𝑑
1 0 −1

] – for better edges. 

ii. Kirsh kernel: something unexplained and unclear. 

iii. The lecturer urges us to create our own kernels. 

e. Gaussian kernel blurs the image, which has 2 uses: 

i. Averaging before downsampling (to avoid aliasing). 

ii. Denoising by smoothing. 

f. Two masks can be merged in advance to 𝐼⨂𝑓⨂𝑔 = 𝐼⨂(𝑓⨂𝑔) (since convolution 

is assossiative). 

g. Harris Corner Detector: 

i. Corner is a useful feature since it is local (opposed to edge). 

ii. In an image of Cartesian features (either horizontal or vertical), the area 

of a corner will be characterized by lots of large gradients – both 

horizontal and vertical (in opposed to edge which would have large 

gradients only in one direction). Hence a corner is detected by ∑𝐼𝑥
2 ≫

1 ∧ ∑𝐼𝑦
2 ≫ 1 . 

iii. In the general (non-Cartesian) case, the coordinates are conceptually 

aligned using eigenvectors. Thus, a corner is detected by 2 large 

eigenvalues of the matrix [
∑𝐼𝑥

2 ∑𝐼𝑥𝐼𝑦

∑𝐼𝑥𝐼𝑦 ∑𝐼𝑦
2 ]. 

h. Modern feature detectors: 

i. Usually extension of Harris corner detector. 

ii. Localizable (local features such as corners). 

iii. Unique signatures – identify the feature with invariance to lighting, 

orientation, etc. 

iv. Popular feature extractors: 

1. Histogram of Oriented Gradients (HOG) 

2. Scale Invariant Feature Transform (SIFT) 

3D Vision – Deriving the Depth from Stereo 
1. A main part of the gap between a 2D image and the 3D object it represents, is the “depth” 

of the image. 

2. Given 1 camera, the depth can only be deduced if the size of at least one object is known, 

using proportions wrt the focus length. 

3. Stereo: Given 2 cameras, the depth can be deduced from the shift between the images: 
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a. (unless the image content is invariant in the direction of the line between the 

cameras) 

4. Correspondence (data association): necessary for measuring the shifts between the 

images. 

a. All shifts are 1D, hence if we see an object in the first camera, we can search it 

along a known 1D line in the second one. 

b. Note that wrong correspondence yields wrong depth estimation, hence reducing 

the search domain is very beneficial. 

c. Correspondence can be based on either patches matching (by SSD – Sum of 

Square Differences – minimization) or features matching (see features analysis 

above). 

d. Assigning the estimated depth of every pixel can yield a Disparity map, in which 

high values represent close distance. 

5. Correspondence – context and alignment: 

a. When the detectors are far from each other, the occlusions derived from the 

depth may be different, thus the two images may be different – certain pixels will 

be missing in each image. 

b. To align the images and cancel the effect of the missing pixels, the algorithm has 

to check the possibility of dropping pixels. A cost is defined for miss-matched 

pixels and for dropped pixels, and the algorithm minimizes the total cost to align 

and match the images under possible occlusions. 

6. Alignment using dynamic programming: 

a. Since alignment is based on dropping certain pixels, the possible combinations of 

dropping are exponential in the size of the image. 

b. “Dynamic programming” aligns the images in O(n_pixels^2). 

c. The problem is defined as finding the best path in a corresponding map, where 

diagonal move represents pixels comparison, horizontal move represents 

occlusion in one image, and vertical move represents occlusion in the other image 

(costs of moves are defined accordingly): 
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d. The best path is computed using MDP (see corresponding section). The value 

iteration method can be applied in this case from the origin and forwards, 

defining the cumulative cost of each node (rather than backwards from the 

destination as demonstrated before). 

e. Note that due to the structure of the abstract map, and since the “motion” within 

it is deterministic, only one iteration is needed to assign the values to the nodes. 

The generalization to 2D image patches may not be trivial, but in the 1D case 

demonstrated above, it is clear that we get O(n^2). 

7. Correspondence – additional challenges: 

a. An object may have different locations wrt the background, if it is far from the 

background. 

b. Rounded occluding objects have different occlusion edges from different POVs. 

c. Reflections of light appear in different locations, depending on the POV. 

8. Stereo vision can be improved by creating clear features through structured light 

illumination – e.g. by stripes illumination, or by laser texture. This is relevant mainly for 

mapping small objects in controlled environment. 

9. A modern alternative approach to Stereo is just using Laser Radar. 

Structure from Motion 
10. Dynamic camera allows mapping vast areas using one camera, based on stereo of 

sequential images. This is called Structure from Motion. 

11. The challenge is that the location of the camera may be unknown or inaccurate, thus the 

distance between the cameras poses is unknown; and the camera takes different images 

in different orientations (rather than only from different locations on the same plane as 

before). 

12. To use stereo approach and compute the depth, we have to locate the camera poses and 

the objects simultaneously. This requires optimizing images correspondence wrt the 

locations, orientations and translations simultaneously, which is a complex non-linear 

optimization problem (can be solved for example by GD). 

13. The problem has 6𝑛𝑝𝑜𝑠𝑒𝑠 + 3𝑛𝑜𝑏𝑗𝑠 unknowns (camera locations and translations, and 

objects locations); and 2𝑛𝑝𝑜𝑠𝑒𝑠𝑛𝑜𝑏𝑗𝑠 constraints (x,y coordinates for every object in every 

image). Thus 6𝑛𝑝𝑜𝑠𝑒𝑠 + 3𝑛𝑜𝑏𝑗𝑠 ≤ 2𝑛𝑝𝑜𝑠𝑒𝑠𝑛𝑜𝑏𝑗𝑠 is required to solve the problem. 

14. Note that problem is invariant to global shifts and rotations, as well as to scaling (i.e. 

stretching the whole system). Thus, there will always remain 3+3+1=7 degrees of freedom 

in the reconstruction. 
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Robotics 
1. Robotics: An agent senses the environment through sensors and performs actions. 

2. The guy started his robotics career by leading his class to win the DARPA challenge of 

crossing a dessert using an autonomous vehicle. 

3. In the urban challenge, the vehicle managed to localize itself within a map and detect 

other cars and obstacles using particle filters and histogram filters. 

Perception 
4. Perception is the part of sensing and understanding the situation. Here we'll mainly talk 

about finding and predicting the location. 

5. Kinematic state dimensionality of a robot (1st order approximation): 

a. Car on a plane: x, y, rotation in plane ➔ 3 dimensions 

b. Free-flying helicopter in the air: x, y, z, 3 Euler angles ➔ 6 dimensions 

6. Dynamic state dimensionality: 

a. Car on a plane: x, y, rotation in plane, vforward, yaw velocity (=turn speed); no speed 

to the side ➔ 5 dimensions 

b. Free-flying helicopter in the air: x, y, z, 3 Euler angles + differentiation of every 

such variable ➔ 12 dimensions 

7. GPS can give the location of a car with ~5m error. In the guy's car, additional particle filter 

improved the localization to ~10cm error. 

8. Monte Carlo Localization: 

a. Basic car model: 2 connected wheels that can move in the same speed (to go 

forward) or in different speeds (to turn). Kinematic state is 3D and dynamic state 

is 5D, as explained above. 

b. In the deterministic case, the location can be predicted every Δ𝑡 ≈ 0.1𝑠 by: 

𝑥′ = 𝑥 + 𝑣 ∙ Δ𝑡 ∙ 𝑐𝑜𝑠𝜃 

𝑦′ = 𝑦 + 𝑣 ∙ Δ𝑡 ∙ 𝑠𝑖𝑛𝜃 

θ′ = 𝜃 + 𝜔 ∙ Δ𝑡 

c. This can be directly applied to particle filter localization, given appropriate map 

and sensors. Reminder: particle filter performs iteratively: measure environment, 

weight particles, sample and predict. 

d. New particles are created by the fact that the actions are stochastic, hence small 

errors are added to the prediction step. 

Planning 
9. Planning is about choosing the next actions given a certain situation. 

10. A driving path can be planned by the tools described in previous lessons… the ones 

demonstrated are partitioning the space into discrete states, and find the best path using 

value-iteration in MDP, or A* (which is useful when we have to use heuristics for 

unmapped roads, e.g. for passing obstacles from aside). 
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11. Continuous world vs. discrete state-space: 

a. The gap between those 2 is a significant problem. For example, a car can't take 

immediate turns (i.e. infinitely sharp turns), hence the path found by A* in 

discrete grid cells space cannot be applied to the actual car. 

b. Hybrid A* memorizes the exact kinematic state (x,y,theta) within a cell. This one 

is determined by the location prediction ODEs (which must have better numerical 

resolution than the grid cells). The transitions between cells are no longer straight 

forward, and smooth turns can be achieved by micro-turning within a cell. This is 

actually a kind of hierarchical planning – grid cell for path search, and exact 

location for driving implementation. 
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Natural Language Processing 
1. Interests: 

a. Philosophical: natural language is the way we think, and what we believe that 

separates us from other animals. 

b. Communication: controlling machines using natural language is intuitive and 

convenient. 

c. Learning: understanding natural language allows machines to learn huge 

amounts of available data. 

2. Two popular language models: 

a. Probabilistic, word-based, learned: based on the empirical probability of 

appearance of sequences of words 𝑃(𝑤1, 𝑤2, … ). 

b. Logical, trees/categories-based, hand-coded: based on abstract structures 

representing valid syntax (noun → verb etc.). 

c. The separation is traditional, but there can be probabilistic and structural models 

of the language. 

3. Naïve Bayes model: every words is assumed to be independent on the context (unigram 

model – every word stands alone), which yields the naïve probabilistic model 𝑃({𝑤𝑖}) =

∏ 𝑝(𝑤𝑖)𝑖 , that deals with "bags of words" rather than sequences. 

4. A general probabilistic model will satisfies 𝑃({𝑤𝑖}) = ∏ 𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1)𝑖 , assuming 

that the probability of a word depends on the previous words in the sentence. 

a. Markov assumption localizes the problem, assuming dependence on the last 𝑘 

words only: 𝑃({𝑤𝑖}) = ∏ 𝑝(𝑤𝑖|𝑤𝑖−𝑘, … , 𝑤𝑖−1)𝑖 . 

i. 𝑘 = 0 gives the naïve Bayes model. 

ii. For 𝑘 = 1 it is called bigram model, since the words kind of come in pairs. 

𝑘 = 2 gives trigram model, and in general we have N-gram models (𝑁 =

𝑘 + 1). 

iii. Higher 𝑘 yields more complex and accurate model of the language. 

b. Stationarity assumption: if I keep talking, it doesn’t matter whether it's the 10th 

or the 20th sentence/word, thus 𝑝(𝑤𝑖|𝑤𝑖−𝑘, … , 𝑤𝑖−1) = 𝑝(𝑤𝑗|𝑤𝑗−𝑘, … , 𝑤𝑗−1). 

This assumption is usually used for simplicity even when there are only few 

sentences or words in each sentence. 

c. Smoothing: as demonstrated before, to reduce the sensitivity to the empirical 

data available for learning, the learned distribution can be smoothed (e.g. by 

averaging it with uniform distribution, as in Laplace smoothing). 

5. Word-based models applications: 
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6. Variations of the probabilistic model may include the syntactic role of a word (noun, verb, 

etc.) or use basic units of letters or phrases (e.g. "New-York City") rather than words. 

7. Letter-based model is effective for learning new words, detection of valid words, and 

classification of phrases to different languages/classes. Note that storing all probabilities 

of triplets of letters requires ~303 ≈ 3 ∙ 104 triplets rather than ~1063
= 1018 triplets 

of words. 

a. In practical language identification, one usually uses both letter-based model 

and several discriminative words – which are common in one language and invalid 

in the others. 

b. Note that for classification, one can use both word-based and letter-based 

features, and examine their efficacies using machine-learning technics. 

c. In addition to machine learning, a nice trick for classification of phrases is based 

on compression technics (e.g. Hoffman compression): a typical text will be more 

efficiently compressed when it contains homogeneous language. Thus, 

compressed sentence will be smaller after being concatenated to text of the same 

language rather than to other language. This can be implemented as follows: 

 

This essentially detects common phrases in the language which appear in the new 

sentence. It demonstrates the close relations between compression and 

processing, through information theory and entropy of expressions. 

Segmentation 
8. Segmentation is the action of separating text into token representing words. 
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9. In written English it is trivially done by spaces. That’s not the case in spoken English or 

even written Chinese (seriously? no spaces?) or words within a URL. 

10. Goal: find 𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑒𝑔𝑃(𝑤1, … , 𝑤𝑛) over all possible segmentations of a sequence 

of characters. 

11. Simplification – Naïve Bayes model: 

a. The joint distribution is simpler to calculate: 𝑃 = ∏𝑃(𝑤𝑖). 

b. Given 𝑛 characters, there are 2𝑛−1 possible segmentations. Independence 

between words allows us to avoid examining every single segmentation. 

12. The naive segmentation works well in most cases, and can be implemented recursively as 

follows (some smoothing should be added inside Pwords()): 

 

13. Problems with the simplified segmentation algorithm: 

a. Ambiguity: “base rate sought to” vs. “base rates ought to”. 

b. Naivety: 𝑃(“𝑖𝑛”) ∗ 𝑃(“𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”) > 𝑃(“𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”), although 

𝑃(“𝑖𝑛 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”) ≪ 𝑃(“𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡”), so the naïve model is wrong here. 

c. Smoothing: “g in or mouse go” was chosen rather than “ginormous ego”. This can 

be prevented by larger database, but also by smarter smoothing, that allows the 

word ‘ginormous’ without observing it before. Such smart smoothing may use, 

for example, letter model that identifies the common ending ‘ous’. 

Spelling 
14. Spelling is finding the correct version of a word among possible corrections. 

15. Goal: given a word 𝑤, find 𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝑐|𝑤) ~ 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃(𝑤|𝑐)𝑃(𝑐) (up to a 

constant denominator). 

16. The prior probability 𝑷(𝒄) of the correct word can be determined as before, possibly 

naively from text database. 

17. The probability 𝑷(𝒘|𝒄) of a certain spelling mistake in a word is more difficult to learn 

due to lack of data. 
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a. There are several spelling correction websites in which one can find tens of 

thousands of common spelling mistakes. This is not enough for words misspelling 

learning. 

b. However, when modeling errors in letters rather than words – e.g. swapping two 

letters, replacement, insertion or deletion – the probability tables derived from 

small database may be sufficient. 

c. Note that 𝑃(𝑤|𝑤) cannot be derived from such databases, and one should 

determine it intuitively (e.g. assuming 95% of the words are spelled correctly). 

18. HTDIG is an open-source search engine based on language analysis. A brief look at the 

code demonstrates the drawbacks of logical language models: complexity (full block of 

code just for specific popular replacement), arbitrariness (why one replacement is tested 

and another one is not?), required knowledge of the language (checking spellings that 

sound similar), sensitivity to implementation errors in every rule specifically, and lack of 

generality (new language analysis requires completely new engine). 

Sentence Structure 
1. Instead of estimating the probability of a sequence of words according to the words and 

their former words, we can analyze the structure of a sentence as a tree: 

 

2. Note that the tree is not unique due to ambiguities in sentences meanings, as 

demonstrated above. 

3. Parsing is derived from rules – called Context Free Grammar (CFG) – for valid structures. 

For example: 
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4. Writing CFG turns out to be extremely difficult. A natural language 𝐿 is typically very 

complex, and a simple grammar language 𝐿𝐺 usually either doesn’t cover the whole 

language or allows too many invalid sentences. One can give up on some of the valid 

sentences and then adding them to the grammar using exceptions, but this is really 

complex. 

5. Probabilistic Context Free Grammar (PCFG): 

a. Just associate a probability with each substruct decomposition (e.g. P(NP->D,N) 

wrt P(NP->N)), to achieve probability estimation of the complete sentence. 

b. Rules & implementation example: 

 

c. The probabilities should be learnt from real data of sentences trees. Such trees 

data is not naturally available (opposed to word counting which is straight 

forward from available texts). However, in the 90s, due to the importance of the 

field, some organizations created such databases manually. One of them is The 

Penn Tree Bank of Pennsylvania University. 

d. PCFG advantages: 

i. Reduce sensitivity to the language derived from the logical grammar – 

invalid sentences might be created, but they would be associated with 

low probabilities. 

ii. Dealing with ambiguity (which interpretation has larger probability?). 

6. Lexicalized Probabilistic Context Free Grammar (LPCFG): 

a. PCFG defines probabilities for both syntactic structures (e.g. NP->N,N) and single 

words (e.g. N->watermelon). 

b. We would like to define probabilities for relations between words. For example, 

in “I saw the man with a telescope”, we wish to solve the ambiguity and decide 

whether “with a telescope” refers to the man or to seeing. This cannot be 

estimated by structural analysis, but must examine the relations between the 

words themselves, and associate them with probabilities. 

c. Note that structural analysis IS needed to understand which words relate to each 

other. 

d. Specifically in the example, we wish to compare the following: 

i. P( NP->NP,PP | NP=man, PP=with telescope ) 
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ii. P( VP->V,NP,PP | V=saw, NP=man, PP=with telescope ) 

e. Since the exact phrases “saw”, “the man” and “with a telescope” are very specific, 

it is difficult to learn their relationships from data. Thus, it is essential to use back-

off models that generalize those terms (e.g. “the man” may belong to “persons” 

category). 

f. All of that is done by Lexicalized Grammar. 

7. Parsing – sentence→tree: 

a. Search approach can be applied – either bottom-up or top-down. 

b. Bottom-up: for every word note the possible interpretations (N,V,D), and then try 

to connect them into phrases, until a complete sentence is achieved. 

c. Top-down: start from the complete sentence node, and try to decompose it into 

sub-phrases according to the grammar rules, until the decomposition fits the 

sentence. 

d. The hierarchical structure of the tree allows recursive parsing, in which every 

phrase can be decomposed independently on the other phrases. 

Machine Translation 
1. Possible approaches: 

a. Translate words. 

b. Translate phrases – few words together. 

c. Translate syntax tree – given structure of sentence in L1, what is the probable 

structure of the translated sentence in L2? 

d. Translate semantics and meaning – understand the general meaning of the 

sentence, e.g. “person does something”, and keep that meaning in the 

translation. 

2. The hierarchy of the approaches above is known as Valcroix’s Pyramid. The higher 

approaches in the hierarchy must rely on the lower ones in order to complete the 

translation task and return a concrete sentence. 

3. A corresponding probabilistic model may take into account the following probabilities: 

a. Segmentation – picking words together into phrases. 

b. Translation – of L1 phrases to L2 phrases. 

c. Distortion/syntax – how phrases tend to move within the sentence in such 

translations, or how the syntax tends to change between the languages. 

d. Result – is the translated sentence valid? 

Summary: Language Models 

Model Probabilistic Structures Complexity Semantics Atomic Unit 

Naïve Bayes 
V 

“Bags of words” X 
word/letter 

Markovian Sequences partially 

CFG X 

Syntax 
X 

word PCFG 
V 

LPCFG V 
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Q&A 
1. Only watched sporadically (about 2 hours of Q&A aggregately!). 

2. Suggested software: 

a. Mahout – machine learning toolkit, useful for both applications and independent 

building of ML algorithms. 

b. MATLAB – strong at quick processing and visualization. 

3. Out of scope: Genetic algorithms, Neural Networks, Fuzzy algorithms, Fuzzy logic. 

4. They said something about connecting excellent students to some good employee, but I 

think it’s only for the paid version of the course. Not sure. 

 


