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UDACITY 

Unsupervised Learning 
Skill: 2/3 

Time: 1 months 

Perquisites: the previous Supervised Learning course is probably enough. 

Instructor: Professor Charles Isbell (Georgia Tech), Professor Michael Littman (Brown University). 
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Randomized Optimization 
1. Optimization: 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑋𝑓(𝑥). 

2. Simple cases for optimization: 

a. Small input space 𝑋 ➔ we can enumerate over all 𝑥 ∈ 𝑋 and pick the maximum. 

b. Simple analytic function 𝑓(𝑥) ➔ we can use calculus to compare derivative to 0. 

c. Differentiable but complex function 𝑓(𝑥), single optimum ➔ Newton method. 

3. Difficult optimization problem properties: 

a. Big input space 

b. Complex function 

c. No/hard derivative 

d. Possibly multiple local optima 

4. Hill climbing – like GD but using numerical differences rather than derivative: 

o x = rand(X) 

o while true 

▪ y* = argmaxy in the neighborhood of xf(y) # discrete space assumed 

▪ if f(y*)>f(x) 

• x=y* # higher point was found in the neighborhood 

▪ else 

• break # x is already the highest in the neighborhood 

5. Random restart is a simple way to overcome local optimum, assuming there aren’t too 

many such local optima. It reduces the sensitivity to the starting point, since multiple 

initial points are tried. The time cost is a constant factor. 

6. The efficiency of hill climbing is strongly affected by the “attraction base” around the 

global optimum – the set of initial points that would converge into that optimum, rather 

than to other local optima. 

7. Simulated Annealing: 

a. Inspiration: a blacksmith has to heat and cool the steel iteratively until all the 

atoms get to the steady state of lowest energy. 

b. Doing so allows to escape local optima and explore more areas. 

c. Algorithm – Metropolis-Hastings: 

i. x = rand(X) 

ii. for i=1:N 

1. y = some arbitrary point in N(x) 

2. do x=y with prob. 𝑃(𝑥, 𝑦, 𝑇) = 1 𝑖𝑓 𝑓(𝑦) ≥ 𝑓(𝑥); 𝑒𝑙𝑠𝑒 𝑒
𝑓(𝑦)−𝑓(𝑥)

𝑇  

a. If y is better we prefer it; otherwise It depends on how 

worse it is and how “hot” the temperature is. 

b. T=0 ➔ hill climbing; T=inf ➔ random walk. 

3. decrease temperature T a little 

d. It turns out that for every point x, 𝑃(𝑒𝑛𝑑𝑖𝑛𝑔 𝑎𝑡 𝑥) =
𝑒𝑓(𝑥)/𝑇

𝑍𝑇
 (Boltzmann 

distribution): 

i. T=0 yields hill climbing, which is sensitive to local maximum; though 

according to the claim, it guarantees convergence to the global maximum 

with P=1. 
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ii. I would expect that when T is high then the algorithm will do nothing 

beneficial; and when T becomes low the algorithm will practically act like 

hill climbing starting at a random point (since until this moment, is acted 

like a random walk). 

iii. To make this algorithm seeming less useless, I would keep the best point 

explored so far, and when T becomes low, I would get back to this point 

rather than starting from the current random point I’m at. 

8. Genetic Algorithms (GA): 

a. Inspiration: as in evolution, generate multiple learners, keep the fittest ones, then 

generate more learners based on the previous ones, etc. 

b. “best” is determined by a fitness function defined according to the problem. 

c. Iterations in this context are called generations. 

d. Possible manipulations on the parameters of the learner: 

i. Mutation: change one parameter randomly. 

ii. Merging / Crossover: combine parameters of one previous learner with 

those of another previous learner. 

e. Implementation examples: 

i. Multi-dimensional search problem: try to change only one coordinate 

randomly, or combine coordinates of different explored points. 

ii. NN: change certain parameters randomly, or combine matrices of 

different NNs. 

f. Algorithm: 

i. 𝑃0 = initial random population of size K 

ii. While not converged 

1. Compute fitness of all 𝑥 ∈ 𝑃𝑡 

2. Select “most fit” individuals, using either of the following: 

a. Truncate Selection: top r percent 

b. Roulette Wheel: weighted prob. – choose randomly with 

higher prob. for better individuals (as in particle filters) 

3. Generate more individuals (by mutation/merging), replacing the 

previous least fit individuals 

g. Crossover implementation: 

i. Choose two individuals; divide the parameters randomly into two 

domains; for the first child take domain A from the parent 1 and domain 

B from parent 2, and for the second child take domain A from the parent 

2 and domain B from parent 1. 

1. Preference bias: subspaces of parameters are assumed to be 

beneficial by themselves; locality – parameters of the same 

domain “work together”. 

ii. Uniform crossover: similar to the first one, but instead of two domains of 

parameters, deal with every parameter independently – and take it 

randomly from parent 1 to the first child and from parent 2 to the second 

child, or vice versa. 
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1. Preference bias: parameters are assumed to be beneficial by 

themselves; no locality assumed. 

2. This type of crossover actually happens biologically in the level of 

genes. 

h. GA tend to be great! 

9. Note: the described algorithms have no significant memory – they do a lot of work, but 

keep only the current point/individual: 

a. No capture of history – no track on where we’ve already looked or what we found. 

i. TABU search keeps track of where we were and tries to avoid it again. 

b. No capture of probability distribution that maybe can be derived from the 

randomized search. 

i. The Annealing kind of captures probability distribution – since we know 

that the final point is Boltzmann-distributed. 

MIMIC 
10. MIMIC: a decades-old algorithm; name source is not explained. 

11. Main idea: 

a. Model distribution directly 

b. Refine model successively 

c. Convey space structure 

12. The estimated distribution in this problem is the distribution of the individuals in the 

space which have fitness of at least a certain level. The distribution stores the 

relationships between the features (e.g. coordinates) of these fit individuals. 

13. High-level algorithm: 

a. set very small 𝜃 

b. for t=1:T 

i. estimate distribution “𝑃𝜃𝑡
(𝑥)” 

1. That’s not trivial, and has to allow generating samples of the next 

desired distribution. 

ii. 𝜃𝑡+1 =nth percentile of 𝑃𝜃𝑡
(𝑥) 

iii. retain only {𝑥|𝑓(𝑥) ≥ 𝜃𝑡+1} 

14. Representation (that’s one possible implementation of MIMIC): 

a. Dependency Trees – Bayesian networks with up to one parent for each node (thus 

number of parameters is 2nfeatures-1). 

b. 𝑃(𝑥) = ∏ 𝑃(𝑥𝑖|𝑝𝑎𝑟𝑒𝑛𝑡(𝑥𝑖))𝑖  

c. Relationships between features is captured. 

d. Sampling is easy (topological sort in a tree – linear in number of features). 

15. Estimating the distribution through dependency trees: 

a. The estimated probability based on the graph 𝑃̂𝜋 has to be as similar as possible 

to the true probability 𝑃. The difference is measured by KL divergence, which can 

be converted to conditional entropy h and to mutual information I (all from 

information theory, and the last term is a symmetric measurement): 
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b. 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝐾𝐿(𝑃||𝑃̂𝜋) = 𝑎𝑟𝑔𝑚𝑖𝑛∑𝑃[𝑙𝑔𝑃 − 𝑙𝑔𝑃̂𝜋] = 𝑎𝑟𝑔𝑚𝑖𝑛 − ℎ(𝑃) +

∑ℎ(𝑥𝑖|𝜋(𝑥𝑖)) = 𝑎𝑟𝑔𝑚𝑖𝑛 − ∑ℎ(𝑥𝑖) + ∑ℎ(𝑥𝑖|𝜋(𝑥𝑖)) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐼(𝑥𝑖; 𝜋(𝑥𝑖)) 

c. Thus, we wish to find the dependency tree with the largest mutual information 

between its nodes. 

d. We begin with fully-connected graph of features (nodes) and their mutual 

information (edges), and we have to find the maximum spanning tree of this 

graph. That’s a known problem in graph theory, solved by Prim and Kruskal 

algorithms, where the former is better for densely-connected graphs. The root of 

the tree can be chosen arbitrarily from the outer nodes. 

e. Every iteration of MIMIC, the mutual information is computed for the current 

samples, and then used to find the maximum spanning tree. 

16. Alternative representations for MIMIC: 

a. Unconditional probability distribution (I guess it's just assuming that all features 

are independent, which is very easy but quite degenerated). 

b. Chain – private case of dependency tree with only one child for each node (i.e. 

O→O→O→O→…). In this case, the structure (order of features) is usually 

determined in advance (and not derived from the fully-connected graph). 

c. General Bayesian networks. 

17. Dependency trees are a good compromise – they are simple Bayesian networks that do 

store relationships between the features but don’t have exponential cost in the 

construction. 

18. Advantages of MMIC: 

a. Storing structures and relationships rather than values of individual points. 

b. Representing distributions of 𝑃𝜃 for variant 𝜃s (not only the optimum). 

c. Local optima can do problems, but MIMIC is quite robust due to the kind of 

random restart applied every iteration. 

d. MIMIC typically requires much less iterations than annealing or GA, though each 

iteration is much more complex. 

i. Since fitness evaluations are per iteration, this is especially efficient when 

the computation of the fitness f(x) is expensive (e.g. the fitness of a 

designed rocket, which requires running a physical simulation of the 

rocket; or fitness requiring manual human feedback). 
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Clustering 
1. Clustering problem: 

a. Input: data points in a metric space 𝑋 (similarity may replace the metric) 

i. The distance/similarity definition expresses domain knowledge. 

b. Output: partition function 

2. Single Linkage Clustering (SLC): 

a. Algorithm: 

i. define a cluster for each point {𝑥𝑖}𝑖=1
𝑛  

ii. for t=1:(n-k) % eventually k clusters remain 

1. merge the two closets clusters % distance between clusters is 

defined by the closest two points 

b. Tracking all the merges in a tree structure (constructed from the leaves upwards) 

allows going back to smaller clusters. In fact, this algorithm is very telescopic. 

c. Running time: O(n3) for k<<n (typical), O(n2) for k~n. 

i. Running time is derived from comparing all the pairs of points. Certain 

tricks may reduce the required time for that (splitting data to regions, 

remembering comparisons over different iterations, etc.). 

d. Preference bias: the algorithm is very local – it looks for the next two closest 

points to connect. Sequences of points may be connected in spite of being 

geometrically weird (see below). Random gaps in the data may leave the clusters 

split. This algorithm seems well suited to manifolds learning. 

 

3. K-Means: 

a. Explained in the AI course summary. 

b. Yields more compact clusters concentrated around centers. 

c. K-Means as optimization: 

i. Configuration – centers and partitions. 

ii. Scores – sum of points distances from clusters centers. 

iii. Neighborhoods of configurations – quite wide – all configurations with 

either identical centers or identical partition. 

d. K-Means is a private case of hill climbing – each iteration we choose the best 

configuration in the neighborhood. 

i. Proof of "bestness" within the neighborhood: the partition update 

directly minimizes the distances which define the error; and the mean 
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centers are the minimizers of the squared errors, as proved in least 

squares. 

e. Error weakly decreasing in a bounded space (finite number of points derives finite 

number of configurations available to the algorithm) → convergence. 

i. As long as the algorithm is deterministic, i.e. breaks ties in a consistent 

way. 

ii. The convergence is quite fast, since the neighborhoods are large. 

f. Sensitive to local optima. Solutions: 

i. Random restart. 

ii. Choosing initial centers to be data points – helps to prevent centers from 

being far away from the data. 

iii. Manual choice of the initial centers according to understanding of the 

data, kind of trying to find a big convex hole in the space of the problem. 

4. Expectation Maximization (EM): 

a. Explained in the AI course summary. 

b. Notations: 

i. Data: 𝑋 = {𝑥𝑖} 

ii. Hidden variables: 𝑍 = {𝑧𝑖𝑗} = {𝑃(𝑥𝑖 ∈ 𝑐𝑗)} – updated in the E-step 

iii. Parameters: Θ = {𝜃𝑘} – updated in the M-step 

c. Properties: 

i. Likelihood is weakly decreasing. 

ii. Never diverges, practically converges. 

iii. Sensitive to local optima – often essential to use random restart. 

iv. Any parametric distribution can be used as long as we know how to 

compute Expectation (Bayesian inference) and Maximization (likelihood). 

v. “Soft” partition is capable of handling overlapping (intersecting) clusters. 

5. Clustering properties: 

a. Richness (avoid representation limits): for any assignment of objects to clusters 

𝐶, there exists a distance matrix 𝐷 such that the output of the clustering 𝑃𝐷 is 𝐶. 

i. For example, constant number of clusters is not rich. 

b. Scale-invariance: the output is invariant to the transformation 𝐷 → 𝑎𝐷 for 𝑎 > 0 

(i.e. invariance to scales or units). 

i. For example, SLC stop-condition based on the distance between the 

currently closest clusters is not scale-invariant. 

c. Consistency: shrinking intra-cluster distances and expanding inter-cluster 

distances does not change the clustering (i.e. the notion of similarity is 

consistent). 

i. For example, SLC stop-condition based on the normalized distance 

between the currently closest clusters is inconsistent. 

6. Impossibility Theorem (Kleinberg): the three desired clustering properties are mutually 

contradicting! 
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a. Thus, clustering should not be used as an automatic black-box, but rather go 

along with researcher’s interpretation. 
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Feature Selection 
1. Motivation: 

a. Knowledge discovery – interpretability and insights about the data. Usually most 

of the data is not interesting – only few features are relevant. 

b. Curse of dimensionality – amount of needed data grows exponentially with the 

amount of features. 

2. Given 𝑛 initial features (i.e. dimensions), there are 2𝑛 subsets of features. Finding the best 

feature (according to some score function 𝑓) is NP-hard. 

Filtering 
3. Filtering – reduce amount of features before learning. 

4. Properties: 

a. Feature selection can use the data 𝑥𝑖 and the labels 𝑦𝑖, but not the learner 𝐿. 

b. Separation from learning – much faster. 

c. Completely unsupervised – no feedback from learner. 

5. Approaches for filtering: 

a. Keep information gain / variance / entropy. 

b. Keep useful features (detected using an independent learner). 

i. Example: use decision tree; take the features found by the tree and throw 

away the tree itself; and pass the features into a K-NN learner, which 

otherwise would suffer from the curse of dimensionality. 

c. Keep only independent / non-redundant features. 

Wrapping 
6. Wrapping – search features as part of the learning (search of features is “wrapped around 

the learning algorithm”). 

7. Trying to optimize the performance of the learner 𝐿 while reducing as much features as 

possible, without going over all 2𝑛 possible subsets. 

8. Properties: 

a. Very slow – search and learning have to be done iteratively. 

b. Takes into account the learning model bias, and the learning itself – which is 

useful when the eventual goal is supervised, as usually. 

9. Approaches: 

a. Hill climbing: 

i. Forward: start from no features and every iteration add the best feature 

if it's useful enough. 

ii. Backward: start from all features and every iteration remove the worst 

feature if it's useless enough. 

b. Randomized optimization – the previous algorithms implicitly choose the useful 

features, where greediness + randomization are used for efficient search. 
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Relevance vs. Usefulness 
10. Relevant feature = informative – measured by the effect on BOC (Bayes Optimal Classifier, 

which is “special” since it's optimal if we look at all the possible hypotheses, see 

supervised course): 

a. Strongly relevant = removing it degrades BOC. 

b. Weakly relevant = not strongly relevant, but there exist a subset of features, such 

that removing it from the subset degrades BOC. 

i. Different features with the same information cannot be strongly relevant 

since each one of them can be removed. So weakly relevant can be seen 

as kind of non-exclusively relevant. 

c. Irrelevant = neither strongly nor weakly relevant. 

11. Useful feature = helps a particular predictor to minimize error. 

a. If the general model is degenerated, then irrelevant features may be found useful 

(e.g. the model 𝑤𝑇𝑥 > 0 without bias 𝑏 may use some constant feature ∀𝑖: 𝑥𝑖
𝑗

=

1 to implement bias). 

12. My conclusion is to keep the model rich enough, though the lecturers seem to be fine 

with useful-but-irrelevant features. 

 

Feature Transformation 
1. Feature Transformation: pre-processing of features, generating new (typically smaller / 

more compact) feature set, retaining as much (relevant/useful) information as possible. 

2. Note: feature selection is a private case of feature transformation. 

3. Motivation: 

a. We’ve already seen useful implicit examples: xor, kernel methods (SVN), NN, etc. 

b. Explicit feature transformation is useful, for example, in the ad-hoc information 

retrieval problem (“google problem”), where you have to store lots of data with 

lots of dimensions, ambiguities, etc. and deal with unexpected queries. 

Principal Components Analysis (PCA) 
1. Well explained in Yoel’s course notes. 

2. In short – finds the directions (principal components) of maximal variance in data. 

3. PCA is the linear transformation storing the maximal amount of data per every number 

of coordinates, allowing the best reconstruction: projecting onto low-dimensional space 

of the principal components, and then re-projecting onto the original space, yields the 

minimal L2 error (since that’s error seems exactly like the variance of the dropped 

components). 

4. Computed through the eigenproblem – which is computationally efficient (well-studied 

problem, and in certain algorithms the computation can be linearly shortened by taking 

less principal components). 

5. Relevance of components can be deduced from the corresponding eigenvalue. 
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6. PCA may be wrong in supervised problems where the relevant information lays in certain 

dimensions which have quite small variance. In this sense, it is analog to filtering. 

Independent Components Analysis (ICA) 
1. While PCA maximizes variance of components, ICA maximizes statistical independence of 

components. 

a. Note: it was unclearly claimed that Gaussians turn out to maximize variance in 

data (what does it mean?), thus PCA does maximizes independence if the data 

consists of independent Gaussians, which is often approximately the case. 

b. Note: the sum of lots of independent variables is Gaussian, thus PCA (maximizing 

variance → Gaussian → sum of original variables) differs from ICA (maximizing 

independence → original variables), assuming the original variables themselves 

are far from normal. 

2. Goal: transform {x}->{y}, while vanishing the mutual information I(yi,yj) and maximizing 

data preservation I({x};{y}). 

3. Example: Blind Source Separation (cocktail party problem): if n people are recorded by n 

microphones, and the people talk independently, then ICA of the microphones recordings 

(dependent features) should output the original people talks (independent signals). 

a. Demonstration: http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi  

4. So it seems that ICA is useful to reconstruct the origins of data that were mixed up, given 

that the origins consist of independent, non-normal signals. 

5. Note: people can separate mixed acoustic signals without multiple microphones, so ICA 

takes advantage of its input to efficiently solve an easier problem, yielding great results. 

6. The algorithm is linear and based on mutual information. It’s supposed to be explained 

in detail in the following frightening article: 

http://mlsp.cs.cmu.edu/courses/fall2012/lectures/ICA_Hyvarinen.pdf . I would rather 

try Wikipedia. 

7. Note: both PCA and ICA try to capture the data efficiently, but they have different 

fundamental assumptions about how the data were generated. 

8. PCA vs. ICA: 

 Relations between 
components 

Relations with 
original data 

Ordered 
features 

Directionality 

PCA Orthogonality Best 
reconstruction 

By variance Non (transpose-
invariant)  

ICA Independence Max mutual 
information 

Non 1st dim = features, 
2nd dim = samples 

(not sure what’s the difference between best reconstruction and max mutual information, but 

they clearly claim these are different things) 

9. They also differ in their mathematical branches: 

a. PCA – linear algebra – easy to understand and to implement, cheaper to run, less 

sensitive to local optima, well-defined and deterministic. 

b. ICA – probability & information theory – striving to the correct answer in 

probabilistic terms, but harder to find what it looks for. 

http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi
http://mlsp.cs.cmu.edu/courses/fall2012/lectures/ICA_Hyvarinen.pdf
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10. ICA is really good at finding fundamental independent components in data, 

demonstrating useful unsupervised understanding of data: 

a. BSS – separating source signals. 

b. Faces – detecting features as noses, ears etc. (PCA finds eigenfaces). 

c.  Natural scenes – finding edges in the scenes, which are the fundamental thing 

distinguishing between different scenes. 

d. Documents – topics. 

More Algorithms 
11. Random Components Analysis (RCA): generate random directions. 

a. Implementation: pick random projection matrix P. 

b. Surprisingly useful as filtering before classification: we reduce dimensions 

(avoiding curse of dimensionality) while taking all original features into account 

(as opposed, for example, to just removing features). 

i. “It’s like splattering on my wall until it’s painted, rather than 

systematically filling it with color”. 

c. Another use may be adding features that may be useful, as in SVM. 

d. Anyway, I don’t find it very useful comparing to the systematic alternatives (PCA, 

SVM), though it is a faster algorithm tending to work. 

12. Linear Discriminant Analysis (LDA): find projection that discriminate data wrt to labels. 

That’s actually a supervised problem, useful in spaces where effective discrimination can 

be linearly done. It can be seen as some linear variant of SVM, since new features are 

generated to allow classification. 

13. Partial Least Squares (PLS) was not mentioned. 
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Information Theory 
1. Fundamental terms of information theory: 

a. Mutual Information: are two input vectors similar? 

b. Entropy: does a certain feature carry any information? 

2. Claude Shannon (Bell Labs) – “father of information theory”. 

3. What is information? 

a. In communication – how should we measure the amount of information passed? 

In words? Sentences? 

b. In physics: how much information does a thermodynamic state stores? Maxwell’s 

Demon concept shows that energy does not necessarily physically preserved, but 

rather may be interchanged with information. 

4. Entropy: information, randomness, uncertainty, non-predictability, how many questions 

are required to figure out data. 

5. Hoffman encoding: represent common atomic signals (e.g. letters or words) with shorter 

sequences of bits. 

a. The encoding can be visualized as a tree. 

b. The results depend on the representation of the data – the choice of atomic 

signals. 

6. Entropy: The expected size of a message will be shorter as there is higher variance in the 

use of different atomic signals, since more signals will use the more frequent (and shorter) 

atomic signals. 

a. Thus less randomness → less entropy → shorter messages. 

b. 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝐻(𝑠) = 𝐸(𝑙𝑒𝑛𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔) = ∑𝑃(𝑠) ⋅ 𝑙𝑒𝑛(𝑠) = ∑𝑃(𝑠)log
1

𝑃(𝑠)
. 

i. It is implicitly claimed here that the most compact representation uses 

sequence of length 1/P(s) to represent s. 

7. Joint entropy: randomness contained in two variables together. 

𝐻(𝑥, 𝑦) = −∑P(x, y)logP(x, y) 

a. If x||y, then 𝐻(𝑥, 𝑦) = 𝐻(𝑥) + 𝐻(𝑦). 

8. Conditional entropy: randomness of one variable given another. 

𝐻(𝑦|𝑥) = ∑𝑃(𝑥, 𝑦)𝑙𝑜𝑔𝑃(𝑦|𝑥) 

a. If x||y, then 𝐻(𝑦|𝑥) = 𝐻(𝑦). 

b. In spite of possible detection of independence, conditional entropy does not well-

represent dependence (since it’s not normalized wrt the unconditional entropy). 

9. Mutual information: reduction of randomness of one variable given another. 

𝐼(𝑥, 𝑦) = 𝐻(𝑦) − 𝐻(𝑦|𝑥) 

10. Kullback-Leibler (KL) Divergence: measurement of the distance between two 

distributions. 

𝐷(𝑝||𝑞) = ∫ 𝑝(𝑥)log 
𝑝(𝑥)

𝑞(𝑥)
 

a. Since unsupervised learning tries to model the distribution of a dataset, 

measurement of distance between distributions is an important tool. 

b. It satisfies positivity (and 0 only when p=q), but not symmetry and the triangle 

inequality, so it’s not a mathematical metric. 
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c. Usually 𝑝 represents the true/empirical distribution, whereas 𝑞 represents a 

hypothesis/model/approximation. 

 


